Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Curvature and complexity: Better lower bounds for geodesically convex optimization (2306.02959v2)

Published 5 Jun 2023 in math.OC, cs.CC, cs.NA, math.DG, and math.NA

Abstract: We study the query complexity of geodesically convex (g-convex) optimization on a manifold. To isolate the effect of that manifold's curvature, we primarily focus on hyperbolic spaces. In a variety of settings (smooth or not; strongly g-convex or not; high- or low-dimensional), known upper bounds worsen with curvature. It is natural to ask whether this is warranted, or an artifact. For many such settings, we propose a first set of lower bounds which indeed confirm that (negative) curvature is detrimental to complexity. To do so, we build on recent lower bounds (Hamilton and Moitra, 2021; Criscitiello and Boumal, 2022) for the particular case of smooth, strongly g-convex optimization. Using a number of techniques, we also secure lower bounds which capture dependence on condition number and optimality gap, which was not previously the case. We suspect these bounds are not optimal. We conjecture optimal ones, and support them with a matching lower bound for a class of algorithms which includes subgradient descent, and a lower bound for a related game. Lastly, to pinpoint the difficulty of proving lower bounds, we study how negative curvature influences (and sometimes obstructs) interpolation with g-convex functions.

Citations (4)

Summary

We haven't generated a summary for this paper yet.