Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Flat comodules and contramodules as directed colimits, and cotorsion periodicity (2306.02734v6)

Published 5 Jun 2023 in math.RA and math.AG

Abstract: This paper is a follow-up to arXiv:2212.09639. We consider two algebraic settings of comodules over a coring and contramodules over a topological ring with a countable base of two-sided ideals. These correspond to two (noncommutative) algebraic geometry settings of certain kind of stacks and ind-affine ind-schemes. In the context of a coring $\mathcal C$ over a noncommutative ring $A$, we show that all $A$-flat $\mathcal C$-comodules are $\aleph_1$-directed colimits of $A$-countably presentable $A$-flat $\mathcal C$-comodules. In the context of a complete, separated topological ring $\mathfrak R$ with a countable base of neighborhoods of zero consisting of two-sided ideals, we prove that all flat $\mathfrak R$-contramodules are $\aleph_1$-directed colimits of countably presentable flat $\mathfrak R$-contramodules. We also describe arbitrary complexes, short exact sequences, and pure acyclic complexes of $A$-flat $\mathcal C$-comodules and flat $\mathfrak R$-contramodules as $\aleph_1$-directed colimits of similar complexes of countably presentable objects. The arguments are based on a very general category-theoretic technique going back to an unpublished 1977 preprint of Ulmer and rediscovered in arXiv:2310.16773. Applications to cotorsion periodicity and coderived categories of flat objects in the respective settings are discussed. In particular, in any acyclic complex of cotorsion $\mathfrak R$-contramodules, all the contramodules of cocycles are cotorsion.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (9)
  1. A. Beilinson, V. Drinfeld. Quantization of Hitchin’s integrable system and Hecke eigensheaves. February 2000. Available from http://www.math.utexas.edu/~benzvi/Langlands.html or http://math.uchicago.edu/~drinfeld/langlands.html
  2. S. Henry. When does Indκ(CI)≃Indκ(C)I\operatorname{Ind}_{\kappa}(C^{I})\simeq\operatorname{Ind}_{\kappa}(C)^{I}roman_Ind start_POSTSUBSCRIPT italic_κ end_POSTSUBSCRIPT ( italic_C start_POSTSUPERSCRIPT italic_I end_POSTSUPERSCRIPT ) ≃ roman_Ind start_POSTSUBSCRIPT italic_κ end_POSTSUBSCRIPT ( italic_C ) start_POSTSUPERSCRIPT italic_I end_POSTSUPERSCRIPT? Electronic preprint arXiv:2307.06664 [math.CT].
  3. M. Kontsevich, A. Rosenberg. Noncommutative spaces and flat descent. Max-Planck-Institut für Mathematik (Bonn) preprint MPIM 2004-36.
  4. D. Murfet. Derived categories of quasi-coherent sheaves. Notes, October 2006. Available from http://www.therisingsea.org/notes
  5. L. Positselski. Contraherent cosheaves. Electronic preprint arXiv:1209.2995 [math.CT].
  6. L. Positselski. Exact DG-categories and fully faithful triangulated inclusion functors. Electronic preprint arXiv:2110.08237 [math.CT].
  7. L. Positselski. Notes on limits of accessible categories. Electronic preprint arXiv:2310.16773 [math.CT].
  8. L. Positselski. Locally coherent exact categories. Electronic preprint arXiv:2311.02418 [math.CT].
  9. L. Positselski, J. Št​’ovíček. Coderived and contraderived categories of locally presentable abelian DG-categories. Electronic preprint arXiv:2210.08237 [math.CT].
Citations (7)

Summary

We haven't generated a summary for this paper yet.