Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Physics-Informed Kernel Function Neural Networks for Solving Partial Differential Equations (2306.02606v2)

Published 5 Jun 2023 in math.NA and cs.NA

Abstract: This paper proposed a novel radial basis function neural network (RBFNN) to solve various partial differential equations (PDEs). In the proposed RBF neural networks, the physics-informed kernel functions (PIKFs), which are derived according to the governing equations of the considered PDEs, are used to be the activation functions instead of the traditional RBFs. Similar to the well-known physics-informed neural networks (PINNs), the proposed physics-informed kernel function neural networks (PIKFNNs) also include the physical information of the considered PDEs in the neural network. The difference is that the PINNs put this physical information in the loss function, and the proposed PIKFNNs put the physical information of the considered governing equations in the activation functions. By using the derived physics-informed kernel functions satisfying the considered governing equations of homogeneous, nonhomogeneous, transient PDEs as the activation functions, only the boundary/initial data are required to train the neural network. Finally, the feasibility and accuracy of the proposed PIKFNNs are validated by several benchmark examples referred to high-wavenumber wave propagation problem, infinite domain problem, nonhomogeneous problem, long-time evolution problem, inverse problem, spatial structural derivative diffusion model, and so on.

Citations (19)

Summary

We haven't generated a summary for this paper yet.