Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Regret Bounds for Risk-sensitive Reinforcement Learning with Lipschitz Dynamic Risk Measures (2306.02399v1)

Published 4 Jun 2023 in cs.LG, cs.AI, and stat.ML

Abstract: We study finite episodic Markov decision processes incorporating dynamic risk measures to capture risk sensitivity. To this end, we present two model-based algorithms applied to \emph{Lipschitz} dynamic risk measures, a wide range of risk measures that subsumes spectral risk measure, optimized certainty equivalent, distortion risk measures among others. We establish both regret upper bounds and lower bounds. Notably, our upper bounds demonstrate optimal dependencies on the number of actions and episodes, while reflecting the inherent trade-off between risk sensitivity and sample complexity. Additionally, we substantiate our theoretical results through numerical experiments.

Citations (3)

Summary

We haven't generated a summary for this paper yet.