Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Forgettable Federated Linear Learning with Certified Data Unlearning (2306.02216v2)

Published 3 Jun 2023 in cs.LG and cs.CV

Abstract: The advent of Federated Learning (FL) has revolutionized the way distributed systems handle collaborative model training while preserving user privacy. Recently, Federated Unlearning (FU) has emerged to address demands for the "right to be forgotten"" and unlearning of the impact of poisoned clients without requiring retraining in FL. Most FU algorithms require the cooperation of retained or target clients (clients to be unlearned), introducing additional communication overhead and potential security risks. In addition, some FU methods need to store historical models to execute the unlearning process. These challenges hinder the efficiency and memory constraints of the current FU methods. Moreover, due to the complexity of nonlinear models and their training strategies, most existing FU methods for deep neural networks (DNN) lack theoretical certification. In this work, we introduce a novel FL training and unlearning strategy in DNN, termed Forgettable Federated Linear Learning (F2L2). F2L2 considers a common practice of using pre-trained models to approximate DNN linearly, allowing them to achieve similar performance as the original networks via Federated Linear Training (FLT). We then present FedRemoval, a certified, efficient, and secure unlearning strategy that enables the server to unlearn a target client without requiring client communication or adding additional storage. We have conducted extensive empirical validation on small- to large-scale datasets, using both convolutional neural networks and modern foundation models. These experiments demonstrate the effectiveness of F2L2 in balancing model accuracy with the successful unlearning of target clients. F2L2 represents a promising pipeline for efficient and trustworthy FU. The code is available here.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Ruinan Jin (19 papers)
  2. Minghui Chen (11 papers)
  3. Qiong Zhang (56 papers)
  4. Xiaoxiao Li (144 papers)