Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Achievable Sum Rate Optimization on NOMA-aided Cell-Free Massive MIMO with Finite Blocklength Coding (2306.02107v2)

Published 3 Jun 2023 in cs.IT, cs.SY, eess.SY, and math.IT

Abstract: Non-orthogonal multiple access (NOMA)-aided cell-free massive multiple-input multiple-output (CFmMIMO) has been considered as a promising technology to fulfill strict quality of service requirements for ultra-reliable low-latency communications (URLLC). However, finite blocklength coding (FBC) in URLLC makes it challenging to achieve the optimal performance in the NOMA-aided CFmMIMO system. In this paper, we investigate the performance of the NOMA-aided CFmMIMO system with FBC in terms of achievable sum rate (ASR). Firstly, we derive a lower bound (LB) on the ergodic data rate. Then, we formulate an ASR maximization problem by jointly considering power allocation and user equipment (UE) clustering. To tackle such an intractable problem, we decompose it into two sub-problems, i.e., the power allocation problem and the UE clustering problem. A successive convex approximation (SCA) algorithm is proposed to solve the power allocation problem by transforming it into a series of geometric programming problems. Meanwhile, two algorithms based on graph theory are proposed to solve the UE clustering problem by identifying negative loops. Finally, alternative optimization is performed to find the maximum ASR of the NOMA-aided CFmMIMO system with FBC. The simulation results demonstrate that the proposed algorithms significantly outperform the benchmark algorithms in terms of ASR under various scenarios.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. M. Bennis, M. Debbah, and H. V. Poor, “Ultrareliable and low-latency wireless communication: Tail, risk, and scale,” Proc. IEEE, vol. 106, no. 10, pp. 1834–1853, Oct. 2018.
  2. D. Feng, L. Lai, J. Luo, Y. Zhong, C. Zheng, and K. Ying, “Ultra-reliable and low-latency communications: applications, opportunities and challenges,” Sci. China Inf. Sci., vol. 64, pp. 1–12, Jan. 2021.
  3. J. Navarro-Ortiz, P. Romero-Diaz, S. Sendra, P. Ameigeiras, J. J. Ramos-Munoz, and J. M. Lopez-Soler, “A survey on 5G usage scenarios and traffic models,” IEEE Commun. Surveys Tuts., vol. 22, no. 2, pp. 905–929, 2nd Quart., 2020.
  4. P. Popovski, K. F. Trillingsgaard, O. Simeone, and G. Durisi, “5G wireless network slicing for eMBB, URLLC, and mMTC: A communication-theoretic view,” IEEE Access, vol. 6, pp. 55 765–55 779, Sep. 2018.
  5. B. Hassan, S. Baig, and M. Asif, “Key technologies for ultra-reliable and low-latency communication in 6G,” IEEE Commun. Stand. Mag., vol. 5, no. 2, pp. 106–113, Jun. 2021.
  6. J. W. Won and J. M. Ahn, “3GPP URLLC patent analysis,” ICT Express, vol. 7, no. 2, pp. 221–228, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2405959520302046
  7. J. Östman, A. Lancho, G. Durisi, and L. Sanguinetti, “URLLC with massive MIMO: Analysis and design at finite blocklength,” IEEE Trans. Wireless Commun., vol. 20, no. 10, pp. 6387–6401, Oct. 2021.
  8. H. Ren, C. Pan, Y. Deng, M. Elkashlan, and A. Nallanathan, “Joint pilot and payload power allocation for massive-MIMO-enabled URLLC IIoT networks,” IEEE J. Sel. Areas Commun., vol. 38, no. 5, pp. 816–830, Mar. 2020.
  9. L. Zhao, S. Yang, X. Chi, W. Chen, and S. Ma, “Achieving energy-efficient uplink urllc with MIMO-aided grant-free access,” IEEE Trans. Wireless Commun., vol. 21, no. 2, pp. 1407–1420, Feb. 2022.
  10. S. Elhoushy, M. Ibrahim, and W. Hamouda, “Cell-free massive MIMO: A survey,” IEEE Commun. Surveys Tut., vol. 24, no. 1, pp. 492–523, Firstquarter 2022.
  11. J. Kassam, D. Castanheira, A. Silva, R. Dinis, and A. Gameiro, “A review on cell-free massive MIMO systems,” Electronics, vol. 12, no. 4, Feb. 2023. [Online]. Available: https://www.mdpi.com/2079-9292/12/4/1001
  12. G. Interdonato, P. Frenger, and E. G. Larsson, “Scalability aspects of cell-free massive MIMO,” in Proc. IEEE Conf. Commun., 2019, pp. 1–6.
  13. H. A. Ammar, R. Adve, S. Shahbazpanahi, G. Boudreau, and K. V. Srinivas, “User-centric cell-free massive MIMO networks: A survey of opportunities, challenges and solutions,” IEEE Commun. Surveys Tut., vol. 24, no. 1, pp. 611–652, Firstquarter 2022.
  14. J. Zhang, S. Chen, Y. Lin, J. Zheng, B. Ai, and L. Hanzo, “Cell-free massive MIMO: A new next-generation paradigm,” IEEE Access, vol. 7, pp. 99 878–99 888, Jul. 2019.
  15. Y. Li and G. A. Aruma Baduge, “NOMA-aided cell-free massive MIMO systems,” IEEE Wireless Commun. Lett., vol. 7, no. 6, pp. 950–953, Dec. 2018.
  16. T. K. Nguyen, H. H. Nguyen, and H. D. Tuan, “Max-min QoS power control in generalized cell-free massive MIMO-NOMA with optimal backhaul combining,” IEEE Trans. Veh. Technol., vol. 69, no. 10, pp. 10 949–10 964, Oct. 2020.
  17. J. Zhang, J. Fan, B. Ai, and D. W. K. Ng, “NOMA-based cell-free massive MIMO over spatially correlated rician fading channels,” in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2020, pp. 1–6.
  18. A. A. Ohashi, D. B. d. Costa, A. L. P. Fernandes, W. Monteiro, R. Failache, A. M. Cavalcante, and J. C. W. A. Costa, “Cell-free massive MIMO-NOMA systems with imperfect SIC and non-reciprocal channels,” IEEE Wireless Commun. Lett., vol. 10, no. 6, pp. 1329–1333, Jun. 2021.
  19. F. Rezaei, C. Tellambura, A. A. Tadaion, and A. R. Heidarpour, “Rate analysis of cell-free massive MIMO-NOMA with three linear precoders,” IEEE Trans. Commun., vol. 68, no. 6, pp. 3480–3494, Jun. 2020.
  20. S. Kusaladharma, W. P. Zhu, W. Ajib, and G. Amarasuriya, “Achievable rate analysis of NOMA in cell-free massive MIMO: A stochastic geometry approach,” in Proc. IEEE Int. Conf. Commun. (ICC), May 2019, pp. 1–6.
  21. S. Kusaladharma, W.-P. Zhu, W. Ajib, and G. A. A. Baduge, “Achievable rate characterization of NOMA-aided cell-free massive MIMO with imperfect successive interference cancellation,” IEEE Trans. Commun., vol. 69, no. 5, pp. 3054–3066, May 2021.
  22. J. Zhang, J. Fan, J. Zhang, D. W. K. Ng, Q. Sun, and B. Ai, “Performance analysis and optimization of NOMA-based cell-free massive MIMO for IoT,” IEEE Internet Things J., vol. 9, no. 12, pp. 9625–9639, Jun. 2022.
  23. Y. Zhang, H. Cao, M. Zhou, and L. Yang, “Spectral efficiency maximization for uplink cell-free massive MIMO-NOMA networks,” in Proc. IEEE Int. Conf. Commun. Workshops (ICC Workshops), May 2019, pp. 1–6.
  24. Q. N. Le, V.-D. Nguyen, O. A. Dobre, N.-P. Nguyen, R. Zhao, and S. Chatzinotas, “Learning-assisted user clustering in cell-free massive MIMO-NOMA networks,” IEEE Trans. Veh. Technol., vol. 70, no. 12, pp. 12 872–12 887, Dec. 2021.
  25. M. Bashar, K. Cumanan, A. G. Burr, H. Q. Ngo, L. Hanzo, and P. Xiao, “On the performance of cell-free massive MIMO relying on adaptive NOMA/OMA mode-switching,” IEEE Trans. Commun., vol. 68, no. 2, pp. 792–810, Feb. 2020.
  26. X.-T. Dang, M. T. P. Le, H. V. Nguyen, S. Chatzinotas, and O.-S. Shin, “Optimal user pairing approach for NOMA-based cell-free massive MIMO systems,” IEEE Trans. Veh. Technol., pp. 1–15, Apr. 2022.
  27. Y. Polyanskiy, H. V. Poor, and S. Verdu, “Channel coding rate in the finite blocklength regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5, pp. 2307–2359, May. 2010.
  28. X. Zhao, W. Chen, and H. V. Poor, “Queue-aware finite-blocklength coding for ultra-reliable and low-latency communications: A cross-layer approach,” IEEE Trans. Wireless Commun., vol. 21, no. 10, pp. 8786–8802, Oct. 2022.
  29. Q. Peng, H. Ren, C. Pan, N. Liu, and M. Elkashlan, “Resource allocation for uplink cell-free massive MIMO enabled URLLC in a smart factory,” IEEE Trans. Commun., vol. 71, no. 1, pp. 553–568, Jan. 2023.
  30. Q. Peng, H. Ren, M. Dong, M. Elkashlan, K.-K. Wong, and L. Hanzo, “Resource allocation for cell-free massive MIMO-aided URLLC systems relying on pilot sharing,” IEEE J. Sel. Areas Commun., vol. 41, no. 7, pp. 2193–2207, Jul. 2023.
  31. A. O. Kislal, A. Lancho, G. Durisi, and E. G. Ström, “Efficient evaluation of the error probability for pilot-assisted URLLC with massive MIMO,” IEEE J. Sel. Areas Commun., vol. 41, no. 7, pp. 1969–1981, Jul. 2023.
  32. R. Zhang, K. Xiong, Y. Lu, D. W. K. Ng, P. Fan, and K. B. Letaief, “SWIPT-enabled cell-free massive MIMO-NOMA networks: A machine learning-based approach,” IEEE Trans. Wireless Commun., pp. 1–1, Nov. 2023.
  33. Q. Peng, H. Ren, C. Pan, N. Liu, and M. Elkashlan, “Resource allocation for cell-free massive MIMO-enabled URLLC downlink systems,” IEEE Trans. Veh. Technol., vol. 72, no. 6, pp. 7669–7684, Jun. 2023.
  34. M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programmingg, version 2.1 (2014).” [Online]. Available: http://cvxr.com/cvx.
  35. F. Guo, H. Lu, D. Zhu, and H. Wu, “Interference-aware user grouping strategy in NOMA systems with QoS constraints,” in Proc. IEEE Conf. Comput. Commun., May. 2019, pp. 1378–1386.
  36. F. Guo, H. Lu, and Z. Gu, “Joint power and user grouping optimization in cell-free massive MIMO systems,” IEEE Trans. Wireless Commun., vol. 21, no. 2, pp. 991–1006, Feb. 2022.
  37. H. Q. Ngo, A. Ashikhmin, H. Yang, E. G. Larsson, and T. L. Marzetta, “Cell-free massive MIMO versus small cells,” IEEE Trans. Wireless Commun., vol. 16, no. 3, pp. 1834–1850, Mar. 2017.
  38. W. Xu, X. Li, C.-H. Lee, M. Pan, and Z. Feng, “Joint sensing duration adaptation, user matching, and power allocation for cognitive OFDM-NOMA systems,” IEEE Trans. Wireless Commun., vol. 17, no. 2, pp. 1269–1282, Feb. 2018.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com