Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring Global and Local Information for Anomaly Detection with Normal Samples (2306.02025v1)

Published 3 Jun 2023 in cs.LG

Abstract: Anomaly detection aims to detect data that do not conform to regular patterns, and such data is also called outliers. The anomalies to be detected are often tiny in proportion, containing crucial information, and are suitable for application scenes like intrusion detection, fraud detection, fault diagnosis, e-commerce platforms, et al. However, in many realistic scenarios, only the samples following normal behavior are observed, while we can hardly obtain any anomaly information. To address such problem, we propose an anomaly detection method GALDetector which is combined of global and local information based on observed normal samples. The proposed method can be divided into a three-stage method. Firstly, the global similar normal scores and the local sparsity scores of unlabeled samples are computed separately. Secondly, potential anomaly samples are separated from the unlabeled samples corresponding to these two scores and corresponding weights are assigned to the selected samples. Finally, a weighted anomaly detector is trained by loads of samples, then the detector is utilized to identify else anomalies. To evaluate the effectiveness of the proposed method, we conducted experiments on three categories of real-world datasets from diverse domains, and experimental results show that our method achieves better performance when compared with other state-of-the-art methods.

Citations (2)

Summary

We haven't generated a summary for this paper yet.