Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mixed-type Distance Shrinkage and Selection for Clustering via Kernel Metric Learning (2306.01890v3)

Published 2 Jun 2023 in cs.LG, stat.CO, stat.ME, and stat.OT

Abstract: Distance-based clustering and classification are widely used in various fields to group mixed numeric and categorical data. In many algorithms, a predefined distance measurement is used to cluster data points based on their dissimilarity. While there exist numerous distance-based measures for data with pure numerical attributes and several ordered and unordered categorical metrics, an efficient and accurate distance for mixed-type data that utilizes the continuous and discrete properties simulatenously is an open problem. Many metrics convert numerical attributes to categorical ones or vice versa. They handle the data points as a single attribute type or calculate a distance between each attribute separately and add them up. We propose a metric called KDSUM that uses mixed kernels to measure dissimilarity, with cross-validated optimal bandwidth selection. We demonstrate that KDSUM is a shrinkage method from existing mixed-type metrics to a uniform dissimilarity metric, and improves clustering accuracy when utilized in existing distance-based clustering algorithms on simulated and real-world datasets containing continuous-only, categorical-only, and mixed-type data.

Citations (1)

Summary

We haven't generated a summary for this paper yet.