Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rank-heterogeneous Preference Models for School Choice (2306.01801v1)

Published 1 Jun 2023 in stat.AP and econ.EM

Abstract: School choice mechanism designers use discrete choice models to understand and predict families' preferences. The most widely-used choice model, the multinomial logit (MNL), is linear in school and/or household attributes. While the model is simple and interpretable, it assumes the ranked preference lists arise from a choice process that is uniform throughout the ranking, from top to bottom. In this work, we introduce two strategies for rank-heterogeneous choice modeling tailored for school choice. First, we adapt a context-dependent random utility model (CDM), considering down-rank choices as occurring in the context of earlier up-rank choices. Second, we consider stratifying the choice modeling by rank, regularizing rank-adjacent models towards one another when appropriate. Using data on household preferences from the San Francisco Unified School District (SFUSD) across multiple years, we show that the contextual models considerably improve our out-of-sample evaluation metrics across all rank positions over the non-contextual models in the literature. Meanwhile, stratifying the model by rank can yield more accurate first-choice predictions while down-rank predictions are relatively unimproved. These models provide performance upgrades that school choice researchers can adopt to improve predictions and counterfactual analyses.

Summary

We haven't generated a summary for this paper yet.