Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DocFormerv2: Local Features for Document Understanding (2306.01733v1)

Published 2 Jun 2023 in cs.CV, cs.CL, and cs.LG

Abstract: We propose DocFormerv2, a multi-modal transformer for Visual Document Understanding (VDU). The VDU domain entails understanding documents (beyond mere OCR predictions) e.g., extracting information from a form, VQA for documents and other tasks. VDU is challenging as it needs a model to make sense of multiple modalities (visual, language and spatial) to make a prediction. Our approach, termed DocFormerv2 is an encoder-decoder transformer which takes as input - vision, language and spatial features. DocFormerv2 is pre-trained with unsupervised tasks employed asymmetrically i.e., two novel document tasks on encoder and one on the auto-regressive decoder. The unsupervised tasks have been carefully designed to ensure that the pre-training encourages local-feature alignment between multiple modalities. DocFormerv2 when evaluated on nine datasets shows state-of-the-art performance over strong baselines e.g. TabFact (4.3%), InfoVQA (1.4%), FUNSD (1%). Furthermore, to show generalization capabilities, on three VQA tasks involving scene-text, Doc- Formerv2 outperforms previous comparably-sized models and even does better than much larger models (such as GIT2, PaLi and Flamingo) on some tasks. Extensive ablations show that due to its pre-training, DocFormerv2 understands multiple modalities better than prior-art in VDU.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Srikar Appalaraju (21 papers)
  2. Peng Tang (47 papers)
  3. Qi Dong (21 papers)
  4. Nishant Sankaran (3 papers)
  5. Yichu Zhou (8 papers)
  6. R. Manmatha (31 papers)
Citations (31)