Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Clean Generalization and Robust Overfitting in Adversarial Training from Two Theoretical Views: Representation Complexity and Training Dynamics (2306.01271v4)

Published 2 Jun 2023 in cs.LG and stat.ML

Abstract: Similar to surprising performance in the standard deep learning, deep nets trained by adversarial training also generalize well for unseen clean data (natural data). However, despite adversarial training can achieve low robust training error, there exists a significant robust generalization gap. We call this phenomenon the Clean Generalization and Robust Overfitting (CGRO). In this work, we study the CGRO phenomenon in adversarial training from two views: representation complexity and training dynamics. Specifically, we consider a binary classification setting with $N$ separated training data points. First, we prove that, based on the assumption that we assume there is $\operatorname{poly}(D)$-size clean classifier (where $D$ is the data dimension), ReLU net with only $O(N D)$ extra parameters is able to leverages robust memorization to achieve the CGRO, while robust classifier still requires exponential representation complexity in worst case. Next, we focus on a structured-data case to analyze training dynamics, where we train a two-layer convolutional network with $O(N D)$ width against adversarial perturbation. We then show that a three-stage phase transition occurs during learning process and the network provably converges to robust memorization regime, which thereby results in the CGRO. Besides, we also empirically verify our theoretical analysis by experiments in real-image recognition datasets.

Citations (3)

Summary

We haven't generated a summary for this paper yet.