Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transforming ECG Diagnosis:An In-depth Review of Transformer-based DeepLearning Models in Cardiovascular Disease Detection (2306.01249v1)

Published 2 Jun 2023 in cs.LG and eess.SP

Abstract: The emergence of deep learning has significantly enhanced the analysis of electrocardiograms (ECGs), a non-invasive method that is essential for assessing heart health. Despite the complexity of ECG interpretation, advanced deep learning models outperform traditional methods. However, the increasing complexity of ECG data and the need for real-time and accurate diagnosis necessitate exploring more robust architectures, such as transformers. Here, we present an in-depth review of transformer architectures that are applied to ECG classification. Originally developed for natural language processing, these models capture complex temporal relationships in ECG signals that other models might overlook. We conducted an extensive search of the latest transformer-based models and summarize them to discuss the advances and challenges in their application and suggest potential future improvements. This review serves as a valuable resource for researchers and practitioners and aims to shed light on this innovative application in ECG interpretation.

Citations (3)

Summary

We haven't generated a summary for this paper yet.