Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Versatile Backdoor Attack with Visible, Semantic, Sample-Specific, and Compatible Triggers (2306.00816v4)

Published 1 Jun 2023 in cs.CV and cs.CR

Abstract: Deep neural networks (DNNs) can be manipulated to exhibit specific behaviors when exposed to specific trigger patterns, without affecting their performance on benign samples, dubbed \textit{backdoor attack}. Currently, implementing backdoor attacks in physical scenarios still faces significant challenges. Physical attacks are labor-intensive and time-consuming, and the triggers are selected in a manual and heuristic way. Moreover, expanding digital attacks to physical scenarios faces many challenges due to their sensitivity to visual distortions and the absence of counterparts in the real world. To address these challenges, we define a novel trigger called the \textbf{V}isible, \textbf{S}emantic, \textbf{S}ample-Specific, and \textbf{C}ompatible (VSSC) trigger, to achieve effective, stealthy and robust simultaneously, which can also be effectively deployed in the physical scenario using corresponding objects. To implement the VSSC trigger, we propose an automated pipeline comprising three modules: a trigger selection module that systematically identifies suitable triggers leveraging LLMs, a trigger insertion module that employs generative models to seamlessly integrate triggers into images, and a quality assessment module that ensures the natural and successful insertion of triggers through vision-LLMs. Extensive experimental results and analysis validate the effectiveness, stealthiness, and robustness of the VSSC trigger. It can not only maintain robustness under visual distortions but also demonstrates strong practicality in the physical scenario. We hope that the proposed VSSC trigger and implementation approach could inspire future studies on designing more practical triggers in backdoor attacks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (76)
  1. Q. Chen, Z. Song, J. Dong, Z. Huang, Y. Hua, and S. Yan, “Contextualizing object detection and classification,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 37, no. 1, pp. 13–27, 2014.
  2. J. Li, S. Dong, L. Ding, and T. Xu, “Mssvt++: Mixed-scale sparse voxel transformer with center voting for 3d object detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 46, no. 5, pp. 3736–3752, 2024.
  3. C. Fu, X. Wu, Y. Hu, H. Huang, and R. He, “Dvg-face: Dual variational generation for heterogeneous face recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 6, pp. 2938–2952, 2021.
  4. K. Chitta, A. Prakash, B. Jaeger, Z. Yu, K. Renz, and A. Geiger, “Transfuser: Imitation with transformer-based sensor fusion for autonomous driving,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 11, pp. 12 878–12 895, 2023.
  5. T. Afouras, J. S. Chung, A. Senior, O. Vinyals, and A. Zisserman, “Deep audio-visual speech recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 12, pp. 8717–8727, 2018.
  6. B. Wu, Z. Zhu, L. Liu, Q. Liu, Z. He, and S. Lyu, “Attacks in adversarial machine learning: A systematic survey from the life-cycle perspective,” arXiv preprint arXiv:2302.09457, 2023.
  7. T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “Badnets: Evaluating backdooring attacks on deep neural networks,” IEEE Access, vol. 7, pp. 47 230–47 244, 2019.
  8. X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor attacks on deep learning systems using data poisoning,” arXiv preprint arXiv:1712.05526, 2017.
  9. Z. Wang, J. Zhai, and S. Ma, “Bppattack: Stealthy and efficient trojan attacks against deep neural networks via image quantization and contrastive adversarial learning,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 15 074–15 084.
  10. T. A. Nguyen and A. Tran, “Input-aware dynamic backdoor attack,” in Advances in Neural Information Processing Systems, 2020, pp. 3454–3464.
  11. Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang, “Trojaning attack on neural networks,” in 25th Annual Network And Distributed System Security Symposium, 2018.
  12. M. Barni, K. Kallas, and B. Tondi, “A new backdoor attack in cnns by training set corruption without label poisoning,” in IEEE International Conference on Image Processing, 2019.
  13. Y. Li, Y. Li, B. Wu, L. Li, R. He, and S. Lyu, “Invisible backdoor attack with sample-specific triggers,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021.
  14. T. A. Nguyen and A. T. Tran, “Wanet – imperceptible warping-based backdoor attack,” in International Conference on Learning Representations, 2021.
  15. K. Gao, J. Bai, B. Wu, M. Ya, and S.-T. Xia, “Imperceptible and robust backdoor attack in 3d point cloud,” IEEE Transactions on Information Forensics and Security, vol. 19, pp. 1267–1282, 2023.
  16. E. Wenger, J. Passananti, A. N. Bhagoji, Y. Yao, H. Zheng, and B. Y. Zhao, “Backdoor attacks against deep learning systems in the physical world,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 6206–6215.
  17. H. Ma, Y. Li, Y. Gao, A. Abuadbba, Z. Zhang, A. Fu, H. Kim, S. F. Al-Sarawi, N. Surya, and D. Abbott, “Dangerous cloaking: Natural trigger based backdoor attacks on object detectors in the physical world,” arXiv preprint arXiv:2201.08619, 2022.
  18. H. Ma, Y. Li, Y. Gao, Z. Zhang, A. Abuadbba, A. Fu, S. F. Al-Sarawi, S. Nepal, and D. Abbott, “Transcab: Transferable clean-annotation backdoor to object detection with natural trigger in real-world,” in International Symposium on Reliable Distributed Systems, 2023, pp. 82–92.
  19. A. Turner, D. Tsipras, and A. Madry, “Label-consistent backdoor attacks,” arXiv preprint arXiv:1912.02771, 2019.
  20. Y. Zeng, W. Park, Z. M. Mao, and R. Jia, “Rethinking the backdoor attacks’ triggers: A frequency perspective,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021.
  21. E. Bagdasaryan and V. Shmatikov, “Blind backdoors in deep learning models,” in USENIX Security Symposium, 2021.
  22. S.-H. Chan, Y. Dong, J. Zhu, X. Zhang, and J. Zhou, “Baddet: Backdoor attacks on object detection,” in European Conference on Computer Vision, 2022, pp. 396–412.
  23. T. Wu, T. Wang, V. Sehwag, S. Mahloujifar, and P. Mittal, “Just rotate it: Deploying backdoor attacks via rotation transformation,” in Proceedings of the 15th ACM Workshop on Artificial Intelligence and Security, 2022, pp. 91–102.
  24. C. Luo, Y. Li, Y. Jiang, and S.-T. Xia, “Untargeted backdoor attack against object detection,” in IEEE International Conference on Acoustics, Speech and Signal Processing, 2023, pp. 1–5.
  25. T.-H. Kim, S.-H. Choi, and Y.-H. Choi, “Instance-agnostic and practical clean label backdoor attack method for deep learning based face recognition models,” IEEE Access, 2023.
  26. C. Pasquini and R. Böhme, “Trembling triggers: Exploring the sensitivity of backdoors in dnn-based face recognition,” EURASIP Journal on Information Security, vol. 2020, no. 1, p. 12, 2020.
  27. J. Lin, L. Xu, Y. Liu, and X. Zhang, “Composite backdoor attack for deep neural network by mixing existing benign features,” in Proceedings of the ACM Conference on Computer and Communications Security, 2020, pp. 113–131.
  28. E. Sarkar, H. Benkraouda, and M. Maniatakos, “Facehack: Triggering backdoored facial recognition systems using facial characteristics,” arXiv preprint arXiv:2006.11623, 2020.
  29. M. Xue, C. He, J. Wang, and W. Liu, “Backdoors hidden in facial features: A novel invisible backdoor attack against face recognition systems,” Peer-to-Peer Networking and Applications, vol. 14, pp. 1458–1474, 2021.
  30. H. Li, Y. Wang, X. Xie, Y. Liu, S. Wang, R. Wan, L.-P. Chau, and A. C. Kot, “Light can hack your face! black-box backdoor attack on face recognition systems,” arXiv preprint arXiv:2009.06996, 2020.
  31. B. Wu, S. Wei, M. Zhu, M. Zheng, Z. Zhu, M. Zhang, H. Chen, D. Yuan, L. Liu, and Q. Liu, “Defenses in adversarial machine learning: A survey,” arXiv preprint arXiv:2312.08890, 2023.
  32. Z. Zhu, M. Zhang, S. Wei, B. Wu, and B. Wu, “Vdc: Versatile data cleanser based on visual-linguistic inconsistency by multimodal large language models,” in International Conference on Learning Representations, 2024.
  33. X. Qi, T. Xie, J. T. Wang, T. Wu, S. Mahloujifar, and P. Mittal, “Towards a proactive {{\{{ML}}\}} approach for detecting backdoor poison samples,” in USENIX Security Symposium, 2023, pp. 1685–1702.
  34. B. G. Doan, E. Abbasnejad, and D. C. Ranasinghe, “Februus: Input purification defense against trojan attacks on deep neural network systems,” in Annual Computer Security Applications Conference, 2020, pp. 897–912.
  35. Y. Li, X. Lyu, N. Koren, L. Lyu, B. Li, and X. Ma, “Anti-backdoor learning: Training clean models on poisoned data,” in Advances in Neural Information Processing Systems, 2021.
  36. K. Huang, Y. Li, B. Wu, Z. Qin, and K. Ren, “Backdoor defense via decoupling the training process,” in International Conference on Learning Representations, 2022.
  37. K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-pruning: Defending against backdooring attacks on deep neural networks,” in International Symposium on Research in Attacks, Intrusions, and Defenses, 2018.
  38. Y. Li, X. Lyu, N. Koren, L. Lyu, B. Li, and X. Ma, “Neural attention distillation: Erasing backdoor triggers from deep neural networks,” in International Conference on Learning Representations, 2021.
  39. B. Chen, W. Carvalho, N. Baracaldo, H. Ludwig, B. Edwards, T. Lee, I. Molloy, and B. Srivastava, “Detecting backdoor attacks on deep neural networks by activation clustering,” in The AAAI Conference on Artificial Intelligence Workshop, 2019.
  40. R. Zheng, R. Tang, J. Li, and L. Liu, “Data-free backdoor removal based on channel lipschitzness,” in European Conference Computer Vision.   Springer, 2022, pp. 175–191.
  41. B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y. Zhao, “Neural cleanse: Identifying and mitigating backdoor attacks in neural networks,” in IEEE Symposium on Security and Privacy, 2019.
  42. B. Tran, J. Li, and A. Madry, “Spectral signatures in backdoor attacks,” in Advances in Neural Information Processing Systems Workshop, 2018.
  43. M. Zhu, S. Wei, H. Zha, and B. Wu, “Neural polarizer: A lightweight and effective backdoor defense via purifying poisoned features,” in Advances in Neural Information Processing Systems, 2024.
  44. S. Wei, M. Zhang, H. Zha, and B. Wu, “Shared adversarial unlearning: Backdoor mitigation by unlearning shared adversarial examples,” in Advances in Neural Information Processing Systems, 2024.
  45. E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How to backdoor federated learning,” in International Conference on Artificial Intelligence and Statistics, 2020, pp. 2938–2948.
  46. E. Wenger, R. Bhattacharjee, A. N. Bhagoji, J. Passananti, E. Andere, H. Zheng, and B. Zhao, “Finding naturally occurring physical backdoors in image datasets,” in Advances in Neural Information Processing Systems, 2022, pp. 22 103–22 116.
  47. X. Han, G. Xu, Y. Zhou, X. Yang, J. Li, and T. Zhang, “Physical backdoor attacks to lane detection systems in autonomous driving,” in Proceedings of the ACM International Conference on Multimedia, 2022, pp. 2957–2968.
  48. R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-cam: Visual explanations from deep networks via gradient-based localization,” in Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 618–626.
  49. Y. Li, T. Zhai, B. Wu, Y. Jiang, Z. Li, and S. Xia, “Rethinking the trigger of backdoor attack,” arXiv preprint arXiv:2004.04692, 2020.
  50. S. Li, M. Xue, B. Z. H. Zhao, H. Zhu, and X. Zhang, “Invisible backdoor attacks on deep neural networks via steganography and regularization,” IEEE Transactions on Dependable and Secure Computing, vol. 18, no. 5, pp. 2088–2105, 2020.
  51. J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4 technical report,” arXiv preprint arXiv:2303.08774, 2023.
  52. R. Mokady, A. Hertz, K. Aberman, Y. Pritch, and D. Cohen-Or, “Null-text inversion for editing real images using guided diffusion models,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 6038–6047.
  53. Z. Geng, B. Yang, T. Hang, C. Li, S. Gu, T. Zhang, J. Bao, Z. Zhang, H. Hu, D. Chen et al., “Instructdiffusion: A generalist modeling interface for vision tasks,” arXiv preprint arXiv:2309.03895, 2023.
  54. H. Ye, J. Zhang, S. Liu, X. Han, and W. Yang, “Ip-adapter: Text compatible image prompt adapter for text-to-image diffusion models,” arXiv preprint arXiv:2308.06721, 2023.
  55. L. Zhang, A. Rao, and M. Agrawala, “Adding conditional control to text-to-image diffusion models,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 3836–3847.
  56. H. Liu, C. Li, Q. Wu, and Y. J. Lee, “Visual instruction tuning,” in Advances in Neural Information Processing Systems, 2024.
  57. Y. Li, T. Zhai, Y. Jiang, Z. Li, and S.-T. Xia, “Backdoor attack in the physical world,” arXiv preprint arXiv:2104.02361, 2021.
  58. Y. Li, P. Hu, Z. Liu, D. Peng, J. T. Zhou, and X. Peng, “Contrastive clustering,” in Proceedings of the AAAI Conference on Artificial Intelligence, 2021, pp. 8547–8555.
  59. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2009, pp. 248–255.
  60. A. Singla, L. Yuan, and T. Ebrahimi, “Food/non-food image classification and food categorization using pre-trained googlenet model,” in Proceedings of the International Workshop on Multimedia Assisted Dietary Management, 2016, pp. 3–11.
  61. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
  62. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in International Conference on Learning Representations, 2015.
  63. B. Wu, H. Chen, M. Zhang, Z. Zhu, S. Wei, D. Yuan, and C. Shen, “Backdoorbench: A comprehensive benchmark of backdoor learning,” in Advances in Neural Information Processing Systems, 2022.
  64. M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The pascal visual object classes (voc) challenge,” International Journal of Computer Vision, vol. 88, pp. 303–338, 2010.
  65. D. Yi, Z. Lei, S. Liao, and S. Z. Li, “Learning face representation from scratch,” arXiv preprint arXiv:1411.7923, 2014.
  66. G. B. Huang, M. Mattar, T. Berg, and E. Learned-Miller, “Labeled faces in the wild: A database forstudying face recognition in unconstrained environments,” in Workshop on faces in’Real-Life’Images: detection, alignment, and recognition, 2008.
  67. T. Brooks, A. Holynski, and A. A. Efros, “Instructpix2pix: Learning to follow image editing instructions,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 18 392–18 402.
  68. S. Paris, “A gentle introduction to bilateral filtering and its applications,” in ACM SIGGRAPH 2007 Courses, 2007.
  69. G. K. Wallace, “The jpeg still picture compression standard,” Communications of the ACM, vol. 34, no. 4, pp. 30–44, 1991.
  70. D. Wu and Y. Wang, “Adversarial neuron pruning purifies backdoored deep models,” in Advances in Neural Information Processing Systems, 2021, pp. 16 913–16 925.
  71. R. Zheng, R. Tang, J. Li, and L. Liu, “Pre-activation distributions expose backdoor neurons,” in Advances in Neural Information Processing Systems, 2022, pp. 18 667–18 680.
  72. Y. Zeng, S. Chen, W. Park, Z. Mao, M. Jin, and R. Jia, “Adversarial unlearning of backdoors via implicit hypergradient,” in International Conference on Learning Representations, 2021.
  73. A. Krizhevsky et al., “Learning multiple layers of features from tiny images,” 2009.
  74. T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in context,” in European Conference on Computer Vision, 2014, pp. 740–755.
  75. J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive angular margin loss for deep face recognition,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 4690–4699.
  76. I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with warm restarts,” in International Conference on Learning Representations, 2016.
Citations (8)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com