Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stuttering Detection Using Speaker Representations and Self-supervised Contextual Embeddings (2306.00689v1)

Published 1 Jun 2023 in cs.SD, cs.LG, and eess.AS

Abstract: The adoption of advanced deep learning architectures in stuttering detection (SD) tasks is challenging due to the limited size of the available datasets. To this end, this work introduces the application of speech embeddings extracted from pre-trained deep learning models trained on large audio datasets for different tasks. In particular, we explore audio representations obtained using emphasized channel attention, propagation, and aggregation time delay neural network (ECAPA-TDNN) and Wav2Vec2.0 models trained on VoxCeleb and LibriSpeech datasets respectively. After extracting the embeddings, we benchmark with several traditional classifiers, such as the K-nearest neighbour (KNN), Gaussian naive Bayes, and neural network, for the SD tasks. In comparison to the standard SD systems trained only on the limited SEP-28k dataset, we obtain a relative improvement of 12.08%, 28.71%, 37.9% in terms of unweighted average recall (UAR) over the baselines. Finally, we have shown that combining two embeddings and concatenating multiple layers of Wav2Vec2.0 can further improve the UAR by up to 2.60% and 6.32% respectively.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Shakeel A. Sheikh (7 papers)
  2. Fabrice Hirsch (7 papers)
  3. Slim Ouni (11 papers)
  4. Md Sahidullah (78 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.