Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Stochastic Approximation of Minimax Excess Risk Optimization (2306.00026v2)

Published 31 May 2023 in math.OC and cs.LG

Abstract: While traditional distributionally robust optimization (DRO) aims to minimize the maximal risk over a set of distributions, Agarwal and Zhang (2022) recently proposed a variant that replaces risk with excess risk. Compared to DRO, the new formulation$\unicode{x2013}$minimax excess risk optimization (MERO) has the advantage of suppressing the effect of heterogeneous noise in different distributions. However, the choice of excess risk leads to a very challenging minimax optimization problem, and currently there exists only an inefficient algorithm for empirical MERO. In this paper, we develop efficient stochastic approximation approaches which directly target MERO. Specifically, we leverage techniques from stochastic convex optimization to estimate the minimal risk of every distribution, and solve MERO as a stochastic convex-concave optimization (SCCO) problem with biased gradients. The presence of bias makes existing theoretical guarantees of SCCO inapplicable, and fortunately, we demonstrate that the bias, caused by the estimation error of the minimal risk, is under-control. Thus, MERO can still be optimized with a nearly optimal convergence rate. Moreover, we investigate a practical scenario where the quantity of samples drawn from each distribution may differ, and propose a stochastic approach that delivers distribution-dependent convergence rates.

Citations (2)

Summary

We haven't generated a summary for this paper yet.