Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Characterization of p-exponents by continuous wavelet transforms, applications to the multifractal analysis of sum of random pulses (2305.19239v1)

Published 30 May 2023 in math.CA, cs.NA, math.FA, and math.NA

Abstract: The theory of orthonormal wavelet bases is a useful tool in multifractal analysis, as it provides a characterization of the different exponents of pointwise regularities (H{\"o}lder, p-exponent, lacunarity, oscillation, etc.). However, for some homogeneous self-similar processes, such as sums of random pulses (sums of regular, well-localized functions whose expansions and translations are random), it is easier to estimate the spectrum using continuous wavelet transforms. In this article, we present a new characterization of p-exponents by continuous wavelet transforms and we provide an application to the regularity analysis of sums of random pulses.

Summary

We haven't generated a summary for this paper yet.