Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nested Diffusion Processes for Anytime Image Generation (2305.19066v3)

Published 30 May 2023 in cs.CV

Abstract: Diffusion models are the current state-of-the-art in image generation, synthesizing high-quality images by breaking down the generation process into many fine-grained denoising steps. Despite their good performance, diffusion models are computationally expensive, requiring many neural function evaluations (NFEs). In this work, we propose an anytime diffusion-based method that can generate viable images when stopped at arbitrary times before completion. Using existing pretrained diffusion models, we show that the generation scheme can be recomposed as two nested diffusion processes, enabling fast iterative refinement of a generated image. In experiments on ImageNet and Stable Diffusion-based text-to-image generation, we show, both qualitatively and quantitatively, that our method's intermediate generation quality greatly exceeds that of the original diffusion model, while the final generation result remains comparable. We illustrate the applicability of Nested Diffusion in several settings, including for solving inverse problems, and for rapid text-based content creation by allowing user intervention throughout the sampling process.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Noam Elata (7 papers)
  2. Bahjat Kawar (14 papers)
  3. Tomer Michaeli (67 papers)
  4. Michael Elad (104 papers)
Citations (1)