Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SO(2)-Equivariant Downwash Models for Close Proximity Flight (2305.18983v3)

Published 30 May 2023 in cs.RO, cs.AI, and cs.LG

Abstract: Multirotors flying in close proximity induce aerodynamic wake effects on each other through propeller downwash. Conventional methods have fallen short of providing adequate 3D force-based models that can be incorporated into robust control paradigms for deploying dense formations. Thus, learning a model for these downwash patterns presents an attractive solution. In this paper, we present a novel learning-based approach for modelling the downwash forces that exploits the latent geometries (i.e. symmetries) present in the problem. We demonstrate that when trained with only 5 minutes of real-world flight data, our geometry-aware model outperforms state-of-the-art baseline models trained with more than 15 minutes of data. In dense real-world flights with two vehicles, deploying our model online improves 3D trajectory tracking by nearly 36% on average (and vertical tracking by 56%).

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. J. A. Preiss, W. Honig, G. S. Sukhatme, and N. Ayanian, “Crazyswarm: A large nano-quadcopter swarm,” in IEEE International Conference on Robotics and Automation, 2017, pp. 3299–3304.
  2. G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A. E. Eiben, and T. Vicsek, “Optimized flocking of autonomous drones in confined environments,” Science Robotics, vol. 3, no. 20, p. eaat3536, 2018.
  3. M. Turpin, N. Michael, and V. Kumar, “Trajectory design and control for aggressive formation flight with quadrotors,” Autonomous Robots, vol. 33, pp. 143–156, 2012.
  4. A. Shankar, S. Elbaum, and C. Detweiler, “Dynamic path generation for multirotor aerial docking in forward flight,” in IEEE Conference on Decision and Control, 2020, pp. 1564–1571.
  5. R. Miyazaki, R. Jiang, H. Paul, K. Ono, and K. Shimonomura, “Airborne docking for multi-rotor aerial manipulations,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2018, pp. 4708–4714.
  6. A. Shankar, S. Elbaum, and C. Detweiler, “Multirotor docking with an airborne platform,” in Experimental Robotics: The 17th International Symposium.   Springer, 2021, pp. 47–59.
  7. S. Yoon, P. V. Diaz, D. D. Boyd Jr, W. M. Chan, and C. R. Theodore, “Computational aerodynamic modeling of small quadcopter vehicles,” in American Helicopter Society (AHS) 73rd Annual Forum, 2017.
  8. S. Yoon, H. C. Lee, and T. H. Pulliam, “Computational analysis of multi-rotor flows,” in AIAA Aerospace Sciences Meeting, 2016, p. 0812.
  9. S.-J. Chung, A. A. Paranjape, P. Dames, S. Shen, and V. Kumar, “A survey on aerial swarm robotics,” IEEE Transactions on Robotics, vol. 34, no. 4, pp. 837–855, 2018.
  10. X. Zhou, J. Zhu, H. Zhou, C. Xu, and F. Gao, “Ego-swarm: A fully autonomous and decentralized quadrotor swarm system in cluttered environments,” in IEEE International Conference on Robotics and Automation, 2021, pp. 4101–4107.
  11. G. Throneberry, C. Hocut, and A. Abdelkefi, “Multi-rotor wake propagation and flow development modeling: A review,” Progress in Aerospace Sciences, vol. 127, p. 100762, 2021.
  12. H. Zhang, Y. Lan, N. Shen, J. Wu, T. Wang, J. Han, and S. Wen, “Numerical analysis of downwash flow field from quad-rotor unmanned aerial vehicles,” International Journal of Precision Agricultural Aviation, vol. 3, no. 4, 2020.
  13. G. Shi, X. Shi, M. O’Connell, R. Yu, K. Azizzadenesheli, A. Anandkumar, Y. Yue, and S.-J. Chung, “Neural lander: Stable drone landing control using learned dynamics,” in IEEE International Conference on Robotics and Automation, 2019, pp. 9784–9790.
  14. G. Shi, W. Hönig, X. Shi, Y. Yue, and S.-J. Chung, “Neural-swarm2: Planning and control of heterogeneous multirotor swarms using learned interactions,” IEEE Transactions on Robotics, vol. 38, no. 2, pp. 1063–1079, 2021.
  15. G. Shi, W. Hönig, Y. Yue, and S.-J. Chung, “Neural-swarm: Decentralized close-proximity multirotor control using learned interactions,” in IEEE International Conference on Robotics and Automation, 2020, pp. 3241–3247.
  16. J. Li, L. Han, H. Yu, Y. Lin, Q. Li, and Z. Ren, “Nonlinear mpc for quadrotors in close-proximity flight with neural network downwash prediction,” arXiv preprint arXiv:2304.07794, 2023.
  17. L. Wang, E. A. Theodorou, and M. Egerstedt, “Safe learning of quadrotor dynamics using barrier certificates,” in IEEE International Conference on Robotics and Automation, 2018, pp. 2460–2465.
  18. N. Mohajerin, M. Mozifian, and S. Waslander, “Deep learning a quadrotor dynamic model for multi-step prediction,” in IEEE International Conference on Robotics and Automation, 2018, pp. 2454–2459.
  19. R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural ordinary differential equations,” Advances in Neural Information Processing Systems, vol. 31, 2018.
  20. K. Y. Chee, T. Z. Jiahao, and M. A. Hsieh, “Knode-mpc: A knowledge-based data-driven predictive control framework for aerial robots,” IEEE Robotics and Automation Letters, vol. 7, pp. 2819–2826, 2022.
  21. M. M. Bronstein, J. Bruna, T. Cohen, and P. Veličković, “Geometric deep learning: Grids, groups, graphs, geodesics, and gauges,” arXiv preprint arXiv:2104.13478, 2021.
  22. C. Esteves, “Theoretical aspects of group equivariant neural networks,” arXiv preprint arXiv:2004.05154, 2020.
  23. D. Wang, J. Y. Park, N. Sortur, L. L. Wong, R. Walters, and R. Platt, “The surprising effectiveness of equivariant models in domains with latent symmetry,” in International Conference on Learning Representations, 2023.
  24. D. Wang, R. Walters, X. Zhu, and R. Platt, “Equivariant q𝑞qitalic_q learning in spatial action spaces,” in Conference on Robot Learning.   PMLR, 2022, pp. 1713–1723.
  25. B. Yu and T. Lee, “Equivariant reinforcement learning for quadrotor uav,” in IEEE American Control Conference, 2023, pp. 2842–2847.
  26. X. Zhu, D. Wang, O. Biza, G. Su, R. Walters, and R. Platt, “Sample efficient grasp learning using equivariant models,” Proceedings of Robotics: Science and Systems, 2022.
  27. D. Wang, M. Jia, X. Zhu, R. Walters, and R. Platt, “On-robot learning with equivariant models,” in Conference on Robot Learning, 2022.
  28. P. J. Gorder and R. A. Hess, “Sequential loop closure in design of a robust rotorcraft flight control system,” Journal of Guidance, Control, and Dynamics, vol. 20, no. 6, pp. 1235–1240, 1997.
  29. A. Shankar, S. Elbaum, and C. Detweiler, “Freyja: A full multirotor system for agile & precise outdoor flights,” in IEEE International Conference on Robotics and Automation, 2021, pp. 217–223.
Citations (6)

Summary

We haven't generated a summary for this paper yet.