Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data Augmentation Methods of Dynamic Model Identification for Harbor Maneuvers using Feedforward Neural Network (2305.18851v2)

Published 30 May 2023 in eess.SY and cs.SY

Abstract: A dynamic model for an automatic berthing and unberthing controller has to estimate harbor maneuvers, which include berthing, unberthing, approach maneuvers to berths, and entering and leaving the port. When the dynamic model is estimated by the system identification, a large number of tests or trials are required to measure the various motions of harbor maneuvers. However, the amount of data that can be obtained is limited due to the high costs and time-consuming nature of full-scale ship trials. In this paper, we improve the generalization performance of the dynamic model for the automatic berthing and unberthing controller by introducing data augmentation. This study used slicing and jittering as data augmentation methods and confirmed their effectiveness by numerical experiments using the free-running model tests. The dynamic model is represented by a neural network-based model in numerical experiments. Results of numerical experiments demonstrated that slicing and jittering are effective data augmentation methods but could not improve generalization performance for extrapolation states of the original dataset.

Citations (3)

Summary

We haven't generated a summary for this paper yet.