Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Collaborative Learning via Prediction Consensus (2305.18497v3)

Published 29 May 2023 in cs.LG

Abstract: We consider a collaborative learning setting where the goal of each agent is to improve their own model by leveraging the expertise of collaborators, in addition to their own training data. To facilitate the exchange of expertise among agents, we propose a distillation-based method leveraging shared unlabeled auxiliary data, which is pseudo-labeled by the collective. Central to our method is a trust weighting scheme that serves to adaptively weigh the influence of each collaborator on the pseudo-labels until a consensus on how to label the auxiliary data is reached. We demonstrate empirically that our collaboration scheme is able to significantly boost the performance of individual models in the target domain from which the auxiliary data is sampled. By design, our method adeptly accommodates heterogeneity in model architectures and substantially reduces communication overhead compared to typical collaborative learning methods. At the same time, it can provably mitigate the negative impact of bad models on the collective.

Citations (4)

Summary

We haven't generated a summary for this paper yet.