Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sample Complexity of Variance-reduced Distributionally Robust Q-learning (2305.18420v2)

Published 28 May 2023 in cs.LG, math.OC, and stat.ML

Abstract: Dynamic decision-making under distributional shifts is of fundamental interest in theory and applications of reinforcement learning: The distribution of the environment in which the data is collected can differ from that of the environment in which the model is deployed. This paper presents two novel model-free algorithms, namely the distributionally robust Q-learning and its variance-reduced counterpart, that can effectively learn a robust policy despite distributional shifts. These algorithms are designed to efficiently approximate the $q$-function of an infinite-horizon $\gamma$-discounted robust Markov decision process with Kullback-Leibler ambiguity set to an entry-wise $\epsilon$-degree of precision. Further, the variance-reduced distributionally robust Q-learning combines the synchronous Q-learning with variance-reduction techniques to enhance its performance. Consequently, we establish that it attains a minimax sample complexity upper bound of $\tilde O(|\mathbf{S}||\mathbf{A}|(1-\gamma){-4}\epsilon{-2})$, where $\mathbf{S}$ and $\mathbf{A}$ denote the state and action spaces. This is the first complexity result that is independent of the ambiguity size $\delta$, thereby providing new complexity theoretic insights. Additionally, a series of numerical experiments confirm the theoretical findings and the efficiency of the algorithms in handling distributional shifts.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets