Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Certification Labels for Trustworthy AI: Insights From an Empirical Mixed-Method Study (2305.18307v1)

Published 15 May 2023 in cs.CY and cs.AI

Abstract: Auditing plays a pivotal role in the development of trustworthy AI. However, current research primarily focuses on creating auditable AI documentation, which is intended for regulators and experts rather than end-users affected by AI decisions. How to communicate to members of the public that an AI has been audited and considered trustworthy remains an open challenge. This study empirically investigated certification labels as a promising solution. Through interviews (N = 12) and a census-representative survey (N = 302), we investigated end-users' attitudes toward certification labels and their effectiveness in communicating trustworthiness in low- and high-stakes AI scenarios. Based on the survey results, we demonstrate that labels can significantly increase end-users' trust and willingness to use AI in both low- and high-stakes scenarios. However, end-users' preferences for certification labels and their effect on trust and willingness to use AI were more pronounced in high-stake scenarios. Qualitative content analysis of the interviews revealed opportunities and limitations of certification labels, as well as facilitators and inhibitors for the effective use of labels in the context of AI. For example, while certification labels can mitigate data-related concerns expressed by end-users (e.g., privacy and data protection), other concerns (e.g., model performance) are more challenging to address. Our study provides valuable insights and recommendations for designing and implementing certification labels as a promising constituent within the trustworthy AI ecosystem.

Citations (7)

Summary

We haven't generated a summary for this paper yet.