Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

WiFi-TCN: Temporal Convolution for Human Interaction Recognition based on WiFi signal (2305.18211v2)

Published 21 May 2023 in eess.SP, cs.CV, and cs.LG

Abstract: The utilization of Wi-Fi based human activity recognition has gained considerable interest in recent times, primarily owing to its applications in various domains such as healthcare for monitoring breath and heart rate, security, elderly care. These Wi-Fi-based methods exhibit several advantages over conventional state-of-the-art techniques that rely on cameras and sensors, including lower costs and ease of deployment. However, a significant challenge associated with Wi-Fi-based HAR is the significant decline in performance when the scene or subject changes. To mitigate this issue, it is imperative to train the model using an extensive dataset. In recent studies, the utilization of CNN-based models or sequence-to-sequence models such as LSTM, GRU, or Transformer has become prevalent. While sequence-to-sequence models can be more precise, they are also more computationally intensive and require a larger amount of training data. To tackle these limitations, we propose a novel approach that leverages a temporal convolution network with augmentations and attention, referred to as TCN-AA. Our proposed method is computationally efficient and exhibits improved accuracy even when the data size is increased threefold through our augmentation techniques. Our experiments on a publicly available dataset indicate that our approach outperforms existing state-of-the-art methods, with a final accuracy of 99.42%.

Summary

We haven't generated a summary for this paper yet.