Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Color Critical Graphs of Star Coloring (2305.17956v1)

Published 29 May 2023 in math.CO and cs.DM

Abstract: A \emph{star coloring} of a graph $G$ is a proper vertex-coloring such that no path on four vertices is $2$-colored. The minimum number of colors required to obtain a star coloring of a graph $G$ is called star chromatic number and it is denoted by $\chi_s(G)$. A graph $G$ is called $k$-critical if $\chi_s(G)=k$ and $\chi_s(G -e) < \chi_s(G)$ for every edge $e \in E(G)$. In this paper, we give a characterization of 3-critical, $(n-1)$-critical and $(n-2)$-critical graphs with respect to star coloring, where $n$ denotes the number of vertices of $G$. We also give upper and lower bounds on the minimum number of edges in $(n-1)$-critical and $(n-2)$-critical graphs.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Harshit Kumar Choudhary (2 papers)
  2. I. Vinod Reddy (14 papers)

Summary

We haven't generated a summary for this paper yet.