Synthetic Aperture Radar Image Segmentation with Quantum Annealing (2305.17954v2)
Abstract: In image processing, image segmentation is the process of partitioning a digital image into multiple image segment. Among state-of-the-art methods, Markov Random Fields (MRF) can be used to model dependencies between pixels, and achieve a segmentation by minimizing an associated cost function. Currently, finding the optimal set of segments for a given image modeled as a MRF appears to be NP-hard. In this paper, we aim to take advantage of the exponential scalability of quantum computing to speed up the segmentation of Synthetic Aperture Radar images. For that purpose, we propose an hybrid quantum annealing classical optimization Expectation Maximization algorithm to obtain optimal sets of segments. After proposing suitable formulations, we discuss the performances and the scalability of our approach on the D-Wave quantum computer. We also propose a short study of optimal computation parameters to enlighten the limits and potential of the adiabatic quantum computation to solve large instances of combinatorial optimization problems.
- T. P. AGER, “An introduction to synthetic aperture radar imaging,” Oceanography, vol. 26, no. 2, pp. 20–33, 2013. [Online]. Available: http://www.jstor.org/stable/24862033
- R. Shang, J. Lin, L. Jiao, and Y. Li, “Sar image segmentation using region smoothing and label correction,” Remote. Sens., vol. 12, p. 803, 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:215414221
- M. Merzougui and A. El allaoui, “Region growing segmentation optimized by evolutionary approach and maximum entropy,” Procedia Computer Science, vol. 151, pp. 1046–1051, 01 2019.
- D. Nameirakpam, K. Singh, and Y. Chanu, “Image segmentation using k -means clustering algorithm and subtractive clustering algorithm,” Procedia Computer Science, vol. 54, pp. 764–771, 12 2015.
- X. Jia, T. Lei, X. Du, S. Liu, H. Meng, and A. K. Nandi, “Robust self-sparse fuzzy clustering for image segmentation,” IEEE Access, vol. 8, pp. 146 182–146 195, 2020.
- I. Levner and H. Zhang, “Classification-driven watershed segmentation,” IEEE Transactions on Image Processing, vol. 16, no. 5, pp. 1437–1445, 2007.
- P. Felzenszwalb and D. Huttenlocher, “Efficient graph-based image segmentation,” International Journal of Computer Vision, vol. 59, pp. 167–181, 09 2004.
- B. Tasseff, T. Albash, Z. Morrell, M. Vuffray, A. Y. Lokhov, S. Misra, and C. Coffrin, “On the emerging potential of quantum annealing hardware for combinatorial optimization,” 2022.
- O. Kechagias-Stamatis and N. Aouf, “Automatic target recognition on synthetic aperture radar imagery: A survey,” IEEE Aerospace and Electronic Systems Magazine, vol. 36, no. 3, pp. 56–81, 2021.
- M. Demange, T. Ekim, B. Ries, and C. Tanasescu, “On some applications of the selective graph coloring problem,” European Journal of Operational Research, vol. 240, pp. 307–314, 01 2015.
- C. Arora, S. Banerjee, P. Kalra, and S. Maheshwari, “An efficient graph cut algorithm for computer vision problems,” vol. 6313, 09 2010, pp. 552–565.
- F. Dellaert, “The expectation maximization algorithm,” College of Computing, Georgia Institute of Technology, 2002.
- M. J. Zyphur and F. L. Oswald, “Bayesian estimation and inference: A user’s guide,” Journal of Management, vol. 41, no. 2, pp. 390–420, Feb. 2015.
- Z. Wu, D. Lin, and X. Tang, “Deep markov random field for image modeling,” Computer Vision – ECCV 2016, vol. 9912, pp. 295–312, 10 2016.
- S. Geng, Z. Kuang, J. Liu, S. Wright, and D. Page, “Stochastic learning for sparse discrete markov random fields with controlled gradient approximation error,” NIH Public Access, p. 156, 2018.
- S. Xu, J.-Q. Han, L. Zhao, and G.-H. Liu, “Efficient belief propagation for image segmentation based on an adaptive mrf model,” 2013 IEEE 11th International Conference on Dependable, Autonomic and Secure Computing, pp. 324–329, 2013.
- Y. Tian and Y. Xue, “Variation method overview of image segmentation,” Journal of Physics: Conference Series, vol. 1487, p. 012012, 03 2020.
- X. Wang and J. Zhao, “Image segmentation using improved potts model,” in 2008 Fourth International Conference on Natural Computation, vol. 7, 2008, pp. 352–356.
- T. Wan, N. Canagarajah, and A. Achim, “Segmentation of noisy colour images using cauchy distribution in the complex wavelet domain,” Image Processing, IET, vol. 5, pp. 159 – 170, 04 2011.
- O. Gutiérrez, J. De la Rosa, J. d. J. Hernández, E. González, and N. Escalante, “Semi-huber potential function for image segmentation,” Optics express, vol. 20, pp. 6542–54, 03 2012.
- C. Wu, C. Yang, H. Zhao, and J. Zhu, “On the convergence of the em algorithm: A data-adaptive analysis,” 2016. [Online]. Available: https://api.semanticscholar.org/CorpusID:55245903
- E. Shireman, D. Steinley, and M. Brusco, “Examining the effect of initialization strategies on the performance of gaussian mixture modeling,” Behavior Research Methods, vol. 49, 12 2015.
- Z. Kato, J. Zerubia, M. Berthod, and W. Pieczynski, “Unsupervised adaptive image segmentation,” in 1995 International Conference on Acoustics, Speech, and Signal Processing, vol. 4, 1995, pp. 2399–2402 vol.4.
- Z. Kato, T.-C. Pong, and S. Qiang, “Unsupervised segmentation of color textured images using a multilayer mrf model,” in Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429), vol. 1, 2003, pp. I–961.
- Y. Zhang, Y. Jiazheng, L. Hongzhe, and L. Qing, “Grabcut image segmentation algorithm based on structure tensor,” The Journal of China Universities of Posts and Telecommunications, vol. 24, pp. 38–47, 04 2017.
- M. Schmidt and K. Alahari, “Generalized fast approximate energy minimization via graph cuts: Alpha-expansion beta-shrink moves,” 2011.
- T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: An efficient data clustering method for very large databases,” SIGMOD Rec., vol. 25, no. 2, p. 103–114, jun 1996. [Online]. Available: https://doi.org/10.1145/235968.233324
- F. Pascal, L. Bombrun, J.-Y. Tourneret, and Y. Berthoumieu, “Parameter estimation for multivariate generalized gaussian distributions,” IEEE Transactions on Signal Processing, vol. 61, no. 23, pp. 5960–5971, dec 2013. [Online]. Available: https://doi.org/10.1109%2Ftsp.2013.2282909
- A. Al-Wakeel, A. Razali, and A. Mahdi, “Estimation accuracy of weibull distribution parameters,” Journal of Applied Sciences Research, vol. 5, p. 790, 07 2009.
- G. Gao, “Gao, g.: Statistical modeling of sar images: A survey. sensors 10, 775-795,” Sensors, vol. 10, 01 2010.
- A. Jain and D. Singh, “An optimal selection of probability distribution functions for unsupervised land cover classification of palsar-2 data,” Advances in Space Research, vol. 63, 09 2018.
- M. Johnson, M. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A. Berkley, J. Johansson, P. Bunyk, E. Chapple, C. Enderud, J. Hilton, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Oh, I. Perminov, C. Rich, and G. Rose, “Quantum annealing with manufactured spins,” Nature, vol. 473, pp. 194–8, 05 2011.
- K. Petersen, J. Fehr, and H. Burkhardt, “Fast generalized belief propagation for map estimation on 2d and 3d grid-like markov random fields,” p. 41–50, 2008. [Online]. Available: https://doi.org/10.1007/978-3-540-69321-5_5
- O. Galindo and V. Kreinovich, “What is the optimal annealing schedule in quantum annealing,” pp. 963–967, 12 2020.
- Y. Zhang, M. Brady, and S. Smith, “Segmentation of brain mr images through a hidden markov random field model and the expectation-maximization algorithm,” IEEE Transactions on Medical Imaging, vol. 20, no. 1, pp. 45–57, 2001.
- Z. Kato and T.-C. Pong, “A markov random field image segmentation model for color textured images,” Image and Vision Computing, vol. 24, pp. 1103–1114, 10 2006.
- “Mstar dataset,” https://www.sdms.afrl.af.mil/index.php?collection=mstar, accessed: 2023-05-02.
- T. Zhang, X. Zhang, J. Li, X. Xu, B. Wang, X. Zhan, Y. Xu, X. Ke, T. Zeng, H. Su, I. Ahmad, D. Pan, C. Liu, Y. Zhou, S. JUN, and S. Wei, “Sar ship detection dataset (ssdd): Official release and comprehensive data analysis,” Remote Sensing, vol. 13, p. 3690, 09 2021.
- S. Yarkoni, E. Raponi, T. Bäck, and S. Schmitt, “Quantum annealing for industry applications: introduction and review,” Reports on Progress in Physics, vol. 85, no. 10, p. 104001, sep 2022. [Online]. Available: https://doi.org/10.1088%2F1361-6633%2Fac8c54
- “Pasqal quantum computer.” [Online]. Available: https://www.pasqal.com/