Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generating Visual Information for Motion Sickness Reduction Using a Computational Model Based on SVC Theory (2305.17832v1)

Published 29 May 2023 in cs.HC and q-bio.NC

Abstract: With the advancements in automated driving, there is concern that motion sickness will increase as non-driving-related tasks increase. Therefore, techniques to reduce motion sickness have drawn much attention. Research studies have attempted to estimate motion sickness using computational models for controlling it. Among them, a computational model for estimating motion sickness incidence (MSI) with visual information as input based on subjective vertical conflict theories was developed. In addition, some studies attempt to mitigate motion sickness by controlling visual information. In particular, it has been confirmed that motion sickness is suppressed by matching head movement and visual information. However, there has been no research on optimal visual information control that suppresses motion sickness in vehicles by utilizing mathematical models. We, therefore, propose a method for generating optimal visual information to suppress motion sickness caused from vehicle motion by utilizing a motion sickness model with vestibular and visual inputs. To confirm the effectiveness of the proposed method, we investigated changes in the motion sickness experienced by the participants according to the visual information displayed on the head-mounted display. The experimental results suggested that the proposed method mitigates the motion sickness of the participants.

Citations (2)

Summary

We haven't generated a summary for this paper yet.