Higher-Order Lp Isoperimetric and Sobolev Inequalities (2305.17468v4)
Abstract: Schneider introduced an inter-dimensional difference body operator on convex bodies and proved an associated inequality. In the prequel to this work, we showed that this concept can be extended to a rich class of operators from convex geometry and proved the associated isoperimetric inequalities. The role of cosine-like operators, which generate convex bodies in $\mathbb Rn$ from those in $\mathbb Rn$, were replaced by inter-dimensional simplicial operators, which generate convex bodies in $\mathbb R{nm}$ from those in $\mathbb R{n}$ (or vice versa). In this work, we treat the $Lp$ extensions of these operators, and, furthermore, extend the role of the simplex to arbitrary $m$-dimensional convex bodies containing the origin. We establish $m$th-order $Lp$ isoperimetric inequalities, including the $m$th-order versions of the $Lp$ Petty projection inequality, $Lp$ Busemann-Petty centroid inequality, $Lp$ Santal\'o inequalities, and $Lp$ affine Sobolev inequalities. As an application, we obtain isoperimetric inequalities for the volume of the operator norm of linear functionals $(\mathbb Rn, |\cdot|_E) \to (\mathbb Rm, |\cdot|_F)$.
- Projection bodies in complex vector spaces. Adv. Math. 227, 2 (2011), 830–846.
- Convex symmetrization and applications. Ann. Inst. H. Poincaré C Anal. Non Linéaire 14, 2 (1997), 275–293.
- Asymptotic Geometric Analysis, Part II, vol. 261 of Mathematical Surveys and Monographs. American Mathematical Society, 2021.
- Aubin, T. Problèmes isopérimétriques et espaces de sobolev. J. Differential Geom. 4 (1976), 573–598.
- Symmetrization in geometry. Adv. Math. 306 (2017), 51–88.
- Busemann, H. Volume in terms of concurrent cross-sections. Pacific J. Math. 3 (1953), 1–12.
- A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities. Adv. Math. 182, 2 (2004), 307–332.
- Evans, L. C. Partial Differential Equations, 2nd ed., vol. 19 of Graduate Studies in Mathematics. American Mathematical Society, 2010.
- Measure Theory and Fine Properties of Functions, revised ed. CRC Press, New York, NY, 2015.
- Normal and integral currents. Ann. of Math. (2) 72 (1960), 458–520.
- Firey, W. J. p𝑝pitalic_p-means of convex bodies. Math. Scand. 10 (1962), 17–24.
- Firey, W. J. Shapes of worn stones. Mathematika 21 (1974), 1–11.
- Gardner, R. J. Geometric Tomography, 2nd ed., vol. 58 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2006.
- Groemer, H. Geometric Applications of Fourier Series and Spherical Harmonics. Cambridge University Press, New York, 1996.
- Haberl, C. Complex affine isoperimetric inequalities. Calc. Var. Partial Differential Equations 58, 5 (2019), Paper No. 169, 22.
- Asymmetric affine Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT Sobolev inequalities. J. Funct. Anal. 257, 3 (2009), 641––658.
- General Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT affine isoperimetric inequalities. J. Differential Geom. 83, 1 (2009), 1–26.
- Affine isoperimetric inequalities for higher-order projection and centroid bodies. arXiv:2304.07859 (2023).
- An Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT-functional Busemann-Petty centroid inequality. Int. Math. Res. Not. IMRN, 10 (2021), 7947–7965.
- Affine fractional sobolev and isoperimetric inequalities. Preprint, arxiv: 2207.06375 (2022).
- Hatcher, A. Algebraic topology. Cambridge Univ. Press, Cambridge, 2000.
- On the Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT Minkowski problem for polytopes. Discrete Comput. Geom. 33, 4 (2005), 699–715.
- Koldobsky, A. Fourier Analysis in Convex Geometry. Mathematical Surveys and Monographs. AMS, Providence RI, 2005.
- The Interface between Convex Geometry and Harmonic Analysis, vol. 108 of CBMS Regional Conference Series. AMS, Providence RI, 2008.
- Analysis, vol. 14 of Graduate Studies in Mathematics. American Mathematical Society, 2001.
- Ludwig, M. Minkowski valuations. Trans. Amer. Math. Soc. 357, 10 (2005), 4191–4213.
- Ludwig, M. Minkowski areas and valuations. J. Differential Geom. 86, 1 (2010), 133–161.
- Ludwig, M. Valuations on function spaces. Adv. Geom. 11, 4 (2011), 745–756.
- Lutwak, E. Dual mixed volumes. Pacific J. Math. 58, 2 (1975), 531–538.
- Lutwak, E. The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem. J. Differential Geom. 38, 1 (1993), 131–150.
- Lutwak, E. The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas. Adv. Math. 118, 2 (1996), 244–294.
- Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT affine isoperimetric inequalities. J. Differential Geom. 56, 1 (2000), 111–132.
- Sharp affine Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT sobolev inequalities. J. Differential Geom. 62, 1 (2002), 17–38.
- Optimal Sobolev norms and the Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT Minkowski problem. Int. Math. Res. Not. (2006), Art. ID 62987, 21.
- Blaschke-Santaló inequalities. J. Differential Geom. 47, 1 (1997), 1–16.
- Maz’ja, V. G. Classes of domains and imbedding theorems for function spaces. Soviet Math. Dokl. 1 (1960), 882–885.
- McMullen, P. New combinations of convex sets. Geom. Dedicata 78, 1 (1999), 1–19.
- On the Blaschke-Santaló inequality. Arch. Math. (Basel) 55, 1 (1990), 82–93.
- The Santaló-regions of a convex body. Trans. Amer. Math. Soc. 350, 11 (1998), 4569–4591.
- Asymptotic theory of finite-dimensional normed spaces, vol. 1200 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1986. With an appendix by M. Gromov.
- Petty, C. M. Surface area of a convex body under affine transformations. Proc. Amer. Math. Soc. 12 (1961), 824–828.
- Petty, C. M. Isoperimetric problems. In Proceedings of the Conference on Convexity and Combinatorial Geometry (Univ. Oklahoma, Norman, Okla., 1971). Dept. Math., Univ. Oklahoma, Norman, Okla., 1971, pp. 26–41.
- Petty, C. M. Affine isoperimetric problems. In Discrete geometry and convexity (New York, 1982), vol. 440 of Ann. New York Acad. Sci. New York Acad. Sci., New York, 1985, pp. 113–127.
- Saint-Raymond, J. Sur le volume des corps convexes symétriques. In Initiation Seminar on Analysis: G. Choquet-M. Rogalski-J. Saint-Raymond, 20th Year: 1980/1981, vol. 46 of Publ. Math. Univ. Pierre et Marie Curie. Univ. Paris VI, Paris, 1981, pp. Exp. No. 11, 25.
- Santaló, L. A. An affine invariant for convex bodies of n𝑛nitalic_n-dimensional space. Portugal. Math. 8 (1949), 155–161.
- Schneider, R. Eine Verallgemeinerung des Differenzenkörpers. Monatsh. Math. 74 (1970), 258–272.
- Schneider, R. Random polytopes generated by anisotropic hyperplanes. Bull. London Math. Soc. 14, 6 (1982), 549–553.
- Schneider, R. Convex Bodies: the Brunn-Minkowski Theory, 2nd expanded ed., vol. 151 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2014.
- Talenti, G. Best constant in sobolev inequality. Ann. Mat. Pura Appl. 4 (1976), 353–372.
- Ulivelli, J. Convergence properties of symmetrization processes. Adv. in Appl. Math. 146 (2023), Paper No. 102484, 18.
- Wang, T. The affine Sobolev-Zhang inequality on BV(ℝn)𝐵𝑉superscriptℝ𝑛BV(\mathbb{R}^{n})italic_B italic_V ( blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ). Adv. Math. 230, 4-6 (2012), 2457–2473.
- Webster, R. Convexity. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1994.
- Zhang, G. Restricted chord projection and affine inequalities. Geom. Dedicata 39, 2 (1991), 213–222.
- Zhang, G. The affine Sobolev inequality. J. Differential Geom. 53, 1 (1999), 183–202.