Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Higher-Order Lp Isoperimetric and Sobolev Inequalities (2305.17468v4)

Published 27 May 2023 in math.MG, math.DG, and math.FA

Abstract: Schneider introduced an inter-dimensional difference body operator on convex bodies and proved an associated inequality. In the prequel to this work, we showed that this concept can be extended to a rich class of operators from convex geometry and proved the associated isoperimetric inequalities. The role of cosine-like operators, which generate convex bodies in $\mathbb Rn$ from those in $\mathbb Rn$, were replaced by inter-dimensional simplicial operators, which generate convex bodies in $\mathbb R{nm}$ from those in $\mathbb R{n}$ (or vice versa). In this work, we treat the $Lp$ extensions of these operators, and, furthermore, extend the role of the simplex to arbitrary $m$-dimensional convex bodies containing the origin. We establish $m$th-order $Lp$ isoperimetric inequalities, including the $m$th-order versions of the $Lp$ Petty projection inequality, $Lp$ Busemann-Petty centroid inequality, $Lp$ Santal\'o inequalities, and $Lp$ affine Sobolev inequalities. As an application, we obtain isoperimetric inequalities for the volume of the operator norm of linear functionals $(\mathbb Rn, |\cdot|_E) \to (\mathbb Rm, |\cdot|_F)$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (54)
  1. Projection bodies in complex vector spaces. Adv. Math. 227, 2 (2011), 830–846.
  2. Convex symmetrization and applications. Ann. Inst. H. Poincaré C Anal. Non Linéaire 14, 2 (1997), 275–293.
  3. Asymptotic Geometric Analysis, Part II, vol. 261 of Mathematical Surveys and Monographs. American Mathematical Society, 2021.
  4. Aubin, T. Problèmes isopérimétriques et espaces de sobolev. J. Differential Geom. 4 (1976), 573–598.
  5. Symmetrization in geometry. Adv. Math. 306 (2017), 51–88.
  6. Busemann, H. Volume in terms of concurrent cross-sections. Pacific J. Math. 3 (1953), 1–12.
  7. A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities. Adv. Math. 182, 2 (2004), 307–332.
  8. Evans, L. C. Partial Differential Equations, 2nd ed., vol. 19 of Graduate Studies in Mathematics. American Mathematical Society, 2010.
  9. Measure Theory and Fine Properties of Functions, revised ed. CRC Press, New York, NY, 2015.
  10. Normal and integral currents. Ann. of Math. (2) 72 (1960), 458–520.
  11. Firey, W. J. p𝑝pitalic_p-means of convex bodies. Math. Scand. 10 (1962), 17–24.
  12. Firey, W. J. Shapes of worn stones. Mathematika 21 (1974), 1–11.
  13. Gardner, R. J. Geometric Tomography, 2nd ed., vol. 58 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2006.
  14. Groemer, H. Geometric Applications of Fourier Series and Spherical Harmonics. Cambridge University Press, New York, 1996.
  15. Haberl, C. Complex affine isoperimetric inequalities. Calc. Var. Partial Differential Equations 58, 5 (2019), Paper No. 169, 22.
  16. Asymmetric affine Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT Sobolev inequalities. J. Funct. Anal. 257, 3 (2009), 641––658.
  17. General Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT affine isoperimetric inequalities. J. Differential Geom. 83, 1 (2009), 1–26.
  18. Affine isoperimetric inequalities for higher-order projection and centroid bodies. arXiv:2304.07859 (2023).
  19. An Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT-functional Busemann-Petty centroid inequality. Int. Math. Res. Not. IMRN, 10 (2021), 7947–7965.
  20. Affine fractional sobolev and isoperimetric inequalities. Preprint, arxiv: 2207.06375 (2022).
  21. Hatcher, A. Algebraic topology. Cambridge Univ. Press, Cambridge, 2000.
  22. On the Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT Minkowski problem for polytopes. Discrete Comput. Geom. 33, 4 (2005), 699–715.
  23. Koldobsky, A. Fourier Analysis in Convex Geometry. Mathematical Surveys and Monographs. AMS, Providence RI, 2005.
  24. The Interface between Convex Geometry and Harmonic Analysis, vol. 108 of CBMS Regional Conference Series. AMS, Providence RI, 2008.
  25. Analysis, vol. 14 of Graduate Studies in Mathematics. American Mathematical Society, 2001.
  26. Ludwig, M. Minkowski valuations. Trans. Amer. Math. Soc. 357, 10 (2005), 4191–4213.
  27. Ludwig, M. Minkowski areas and valuations. J. Differential Geom. 86, 1 (2010), 133–161.
  28. Ludwig, M. Valuations on function spaces. Adv. Geom. 11, 4 (2011), 745–756.
  29. Lutwak, E. Dual mixed volumes. Pacific J. Math. 58, 2 (1975), 531–538.
  30. Lutwak, E. The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem. J. Differential Geom. 38, 1 (1993), 131–150.
  31. Lutwak, E. The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas. Adv. Math. 118, 2 (1996), 244–294.
  32. Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT affine isoperimetric inequalities. J. Differential Geom. 56, 1 (2000), 111–132.
  33. Sharp affine Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT sobolev inequalities. J. Differential Geom. 62, 1 (2002), 17–38.
  34. Optimal Sobolev norms and the Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT Minkowski problem. Int. Math. Res. Not. (2006), Art. ID 62987, 21.
  35. Blaschke-Santaló inequalities. J. Differential Geom. 47, 1 (1997), 1–16.
  36. Maz’ja, V. G. Classes of domains and imbedding theorems for function spaces. Soviet Math. Dokl. 1 (1960), 882–885.
  37. McMullen, P. New combinations of convex sets. Geom. Dedicata 78, 1 (1999), 1–19.
  38. On the Blaschke-Santaló inequality. Arch. Math. (Basel) 55, 1 (1990), 82–93.
  39. The Santaló-regions of a convex body. Trans. Amer. Math. Soc. 350, 11 (1998), 4569–4591.
  40. Asymptotic theory of finite-dimensional normed spaces, vol. 1200 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1986. With an appendix by M. Gromov.
  41. Petty, C. M. Surface area of a convex body under affine transformations. Proc. Amer. Math. Soc. 12 (1961), 824–828.
  42. Petty, C. M. Isoperimetric problems. In Proceedings of the Conference on Convexity and Combinatorial Geometry (Univ. Oklahoma, Norman, Okla., 1971). Dept. Math., Univ. Oklahoma, Norman, Okla., 1971, pp. 26–41.
  43. Petty, C. M. Affine isoperimetric problems. In Discrete geometry and convexity (New York, 1982), vol. 440 of Ann. New York Acad. Sci. New York Acad. Sci., New York, 1985, pp. 113–127.
  44. Saint-Raymond, J. Sur le volume des corps convexes symétriques. In Initiation Seminar on Analysis: G. Choquet-M. Rogalski-J. Saint-Raymond, 20th Year: 1980/1981, vol. 46 of Publ. Math. Univ. Pierre et Marie Curie. Univ. Paris VI, Paris, 1981, pp. Exp. No. 11, 25.
  45. Santaló, L. A. An affine invariant for convex bodies of n𝑛nitalic_n-dimensional space. Portugal. Math. 8 (1949), 155–161.
  46. Schneider, R. Eine Verallgemeinerung des Differenzenkörpers. Monatsh. Math. 74 (1970), 258–272.
  47. Schneider, R. Random polytopes generated by anisotropic hyperplanes. Bull. London Math. Soc. 14, 6 (1982), 549–553.
  48. Schneider, R. Convex Bodies: the Brunn-Minkowski Theory, 2nd expanded ed., vol. 151 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2014.
  49. Talenti, G. Best constant in sobolev inequality. Ann. Mat. Pura Appl. 4 (1976), 353–372.
  50. Ulivelli, J. Convergence properties of symmetrization processes. Adv. in Appl. Math. 146 (2023), Paper No. 102484, 18.
  51. Wang, T. The affine Sobolev-Zhang inequality on B⁢V⁢(ℝn)𝐵𝑉superscriptℝ𝑛BV(\mathbb{R}^{n})italic_B italic_V ( blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ). Adv. Math. 230, 4-6 (2012), 2457–2473.
  52. Webster, R. Convexity. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1994.
  53. Zhang, G. Restricted chord projection and affine inequalities. Geom. Dedicata 39, 2 (1991), 213–222.
  54. Zhang, G. The affine Sobolev inequality. J. Differential Geom. 53, 1 (1999), 183–202.
Citations (5)

Summary

We haven't generated a summary for this paper yet.