Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Local geometry of NAE-SAT solutions in the condensation regime (2305.17334v2)

Published 27 May 2023 in math.PR, cond-mat.dis-nn, cs.DM, math-ph, and math.MP

Abstract: The local behavior of typical solutions of random constraint satisfaction problems (CSP) describes many important phenomena including clustering thresholds, decay of correlations, and the behavior of message passing algorithms. When the constraint density is low, studying the planted model is a powerful technique for determining this local behavior which in many examples has a simple Markovian structure. Work of Coja-Oghlan, Kapetanopoulos, M\"{u}ller (2020) showed that for a wide class of models, this description applies up to the so-called condensation threshold. Understanding the local behavior after the condensation threshold is more complex due to long-range correlations. In this work, we revisit the random regular NAE-SAT model in the condensation regime and determine the local weak limit which describes a random solution around a typical variable. This limit exhibits a complicated non-Markovian structure arising from the space of solutions being dominated by a small number of large clusters. This is the first description of the local weak limit in the condensation regime for any sparse random CSPs in the one-step replica symmetry breaking (1RSB) class. Our result is non-asymptotic, and characterizes the tight fluctuation $O(n{-1/2})$ around the limit. Our proof is based on coupling the local neighborhoods of an infinite spin system, which encodes the structure of the clusters, to a broadcast model on trees whose channel is given by the 1RSB belief-propagation fixed point. We believe that our proof technique has broad applicability to random CSPs in the 1RSB class.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com