Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Controlled Hahn-Mazurkiewicz Theorem and its Applications (2305.17200v1)

Published 26 May 2023 in math.MG, math.GN, and math.GT

Abstract: For a metric Peano continuum $X$, let $S_X$ be a Sierpi\'nski function assigning to each $\varepsilon>0$ the smallest cardinality of a cover of $X$ by connected subsets of diameter $\le \varepsilon$. We prove that for any increasing function $\Omega:\mathbb R_+\to\mathbb R_+$ with $(0,1]\subseteq\Omega[\mathbb R_+]$ and $s:=\sum_{n=1}\infty S_X(2{-n})\sum_{m=n}\infty S_X(2{-m})\,\Omega{-1}(\min{1,2{6-m}})<\infty$ there exists a continuous surjective function $f:[0,s]\to X$ with continuity modulus $\omega_f\le\Omega$. This controlled version of the classical Hahn-Mazurkiewicz Theorem implies that $SDim(X)\le HDim(X)\le 2{\cdot}SDim(X)$, where $SDim(X)=\limsup_{\varepsilon\to 0}\frac{\ln(S_X(\varepsilon))}{\ln(1/\varepsilon)}$ is the $S$-dimension of $X$, and $HDim(X)=\inf{\alpha\in (0,\infty]:$ there is a~surjective $\frac1\alpha$-H\"older map $f:[0,1]\to X}$ is the $H\ddot older$ $dimension$ of $X$.

Summary

We haven't generated a summary for this paper yet.