Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Elucidating the role of hydrogen bonding in the optical spectroscopy of the solvated green fluorescent protein chromophore: using machine learning to establish the importance of high-level electronic structure (2305.16981v1)

Published 26 May 2023 in physics.chem-ph and cond-mat.dis-nn

Abstract: Hydrogen bonding interactions with chromophores in chemical and biological environments play a key role in determining their electronic absorption and relaxation processes, which are manifested in their linear and multidimensional optical spectra. For chromophores in the condensed phase, the large number of atoms needed to simulate the environment has traditionally prohibited the use of high-level excited-state electronic structure methods. By leveraging transfer learning, we show how to construct machine-learned models to accurately predict high-level excitation energies of a chromophore in solution from only 400 high-level calculations. We show that when the electronic excitations of the green fluorescent protein chromophore in water are treated using EOM-CCSD embedded in a DFT description of the solvent, the optical spectrum is correctly captured and that this improvement arises from correctly treating the coupling of the electronic transition to electric fields, which leads to a larger response upon hydrogen bonding between the chromophore and water.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (8)
  1. Michael S. Chen (9 papers)
  2. Yuezhi Mao (7 papers)
  3. Andrew Snider (2 papers)
  4. Prachi Gupta (10 papers)
  5. Andrés Montoya-Castillo (24 papers)
  6. Tim J. Zuehlsdorff (12 papers)
  7. Christine M. Isborn (13 papers)
  8. Thomas E. Markland (51 papers)

Summary

We haven't generated a summary for this paper yet.