Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semantic segmentation of sparse irregular point clouds for leaf/wood discrimination (2305.16963v3)

Published 26 May 2023 in cs.CV and cs.LG

Abstract: LiDAR (Light Detection and Ranging) has become an essential part of the remote sensing toolbox used for biosphere monitoring. In particular, LiDAR provides the opportunity to map forest leaf area with unprecedented accuracy, while leaf area has remained an important source of uncertainty affecting models of gas exchanges between the vegetation and the atmosphere. Unmanned Aerial Vehicles (UAV) are easy to mobilize and therefore allow frequent revisits to track the response of vegetation to climate change. However, miniature sensors embarked on UAVs usually provide point clouds of limited density, which are further affected by a strong decrease in density from top to bottom of the canopy due to progressively stronger occlusion. In such a context, discriminating leaf points from wood points presents a significant challenge due in particular to strong class imbalance and spatially irregular sampling intensity. Here we introduce a neural network model based on the Pointnet ++ architecture which makes use of point geometry only (excluding any spectral information). To cope with local data sparsity, we propose an innovative sampling scheme which strives to preserve local important geometric information. We also propose a loss function adapted to the severe class imbalance. We show that our model outperforms state-of-the-art alternatives on UAV point clouds. We discuss future possible improvements, particularly regarding much denser point clouds acquired from below the canopy.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. G. Vincent, C. Antin, M. Laurans, J. Heurtebize, S. Durrieu, C. Lavalley, and J. Dauzat, “Mapping plant area index of tropical evergreen forest by airborne laser scanning. A cross-validation study using LAI2200 optical sensor,” Remote Sensing of Environment, vol. 198, pp. 254–266, 2017.
  2. B. Brede, H. M. Bartholomeus, N. Barbier, F. Pimont, G. Vincent, and M. Herold, “Peering through the thicket: Effects of UAV LiDAR scanner settings and flight planning on canopy volume discovery,” International Journal of Applied Earth Observation and Geoinformation, vol. 114, p. 103056, 2022.
  3. D. Wang, S. Momo Takoudjou, and E. Casella, “LeWoS: A universal leaf-wood classification method to facilitate the 3D modelling of large tropical trees using terrestrial LiDAR,” Methods in Ecology and Evolution, vol. 11, no. 3, pp. 376–389, 2020.
  4. G. Vincent, P. Verley, B. Brede, G. Delaitre, E. Maurent, J. Ball, I. Clocher, and N. Barbier, “Multi-sensor airborne lidar requires intercalibration for consistent estimation of light attenuation and plant area density,” Remote Sensing of Environment, vol. 286, p. 113442, 2023.
  5. B. Wu, G. Zheng, and Y. Chen, “An Improved Convolution Neural Network-Based Model for Classifying Foliage and Woody Components from Terrestrial Laser Scanning Data,” Remote Sensing, vol. 12, no. 6, 2020.
  6. J. Morel, A. Bac, and T. Kanai, “Segmentation of Unbalanced and In-Homogeneous Point Clouds and Its Application to 3D Scanned Trees,” Vis. Comput., vol. 36, p. 2419–2431, oct 2020.
  7. C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space,” in Advances in Neural Information Processing Systems (NeurIPS), vol. 30, Curran Associates, Inc., 2017.
  8. S. Krisanski, M. S. Taskhiri, S. Gonzalez Aracil, D. Herries, A. Muneri, M. B. Gurung, J. Montgomery, and P. Turner, “Forest Structural Complexity Tool—An Open Source, Fully-Automated Tool for Measuring Forest Point Clouds,” Remote Sensing, vol. 13, no. 22, 2021.
  9. L. Windrim and M. Bryson, “Detection, Segmentation, and Model Fitting of Individual Tree Stems from Airborne Laser Scanning of Forests Using Deep Learning,” Remote Sensing, vol. 12, no. 9, 2020.
  10. T. He, H. Huang, L. Yi, Y. Zhou, C. Wu, J. Wang, and S. Soatto, “GeoNet: Deep Geodesic Networks for Point Cloud Analysis,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6881–6890, June 2019.
  11. M. Liu, X. Zhang, and H. Su, “Meshing Point Clouds with Predicted Intrinsic-Extrinsic Ratio Guidance,” in European Conference on Computer Vision (ECCV), Glasgow, UK (A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, eds.), (Cham), pp. 68–84, Springer International Publishing, August 2020.
  12. T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal Loss for Dense Object Detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no. 2, pp. 318–327, 2020.
  13. Y. Bai, G. Vincent, N. Barbier, and O. Martin-Ducup, “UVA laser scanning labelled las data over tropical moist forest classified as leaf or wood points,” Oct 2023.
  14. D. Wang, “Unsupervised semantic and instance segmentation of forest point clouds,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 165, pp. 86–97, 2020.
  15. L. Landrieu and M. Simonovsky, “Large-Scale Point Cloud Semantic Segmentation with Superpoint Graphs,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4558–4567, 2018.
  16. S. M. Krishna Moorthy, K. Calders, M. B. Vicari, and H. Verbeeck, “Improved Supervised Learning-Based Approach for Leaf and Wood Classification From LiDAR Point Clouds of Forests,” IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 5, pp. 3057–3070, 2020.
  17. G. Zheng, L. Ma, W. He, J. U. H. Eitel, L. M. Moskal, and Z. Zhang, “Assessing the Contribution of Woody Materials to Forest Angular Gap Fraction and Effective Leaf Area Index Using Terrestrial Laser Scanning Data,” IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 3, pp. 1475–1487, 2016.
  18. J.-F. Lalonde, N. Vandapel, and M. Hebert, “Automatic Three-Dimensional Point Cloud Processing for Forest Inventory,” Tech. Rep. CMU-RI-TR-06-21, Carnegie Mellon University, Pittsburgh, PA, July 2006.
  19. K. Itakura, S. Miyatani, and F. Hosoi, “Estimating Tree Structural Parameters via Automatic Tree Segmentation From LiDAR Point Cloud Data,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 555–564, 2022.
  20. M. B. Vicari, M. Disney, P. Wilkes, A. Burt, K. Calders, and W. Woodgate, “Leaf and wood classification framework for terrestrial LiDAR point clouds,” Methods in Ecology and Evolution, vol. 10, no. 5, pp. 680–694, 2019.
  21. P. Wan, J. Shao, S. Jin, T. Wang, S. Yang, G. Yan, and W. Zhang, “A novel and efficient method for wood–leaf separation from terrestrial laser scanning point clouds at the forest plot level,” Methods in Ecology and Evolution, vol. 12, no. 12, pp. 2473–2486, 2021.
  22. X. Shen, Q. Huang, X. Wang, J. Li, and B. Xi, “A Deep Learning-Based Method for Extracting Standing Wood Feature Parameters from Terrestrial Laser Scanning Point Clouds of Artificially Planted Forest,” Remote Sensing, vol. 14, no. 15, 2022.
  23. Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen, “PointCNN: Convolution On X-Transformed Points,” in Advances in Neural Information Processing Systems (NeurIPS), vol. 31, Curran Associates, Inc., 2018.
  24. S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks,” in Advances in Neural Information Processing Systems (NeurIPS), NIPS’15, (Cambridge, MA, USA), p. 91–99, MIT Press, 2015.
  25. C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.
  26. J. Choe, C. Park, F. Rameau, J. Park, and I. S. Kweon, “PointMixer: MLP-Mixer For Point Cloud Understanding,” in European Conference on Computer Vision (ECCV), 2022.
  27. H. Zhao, L. Jiang, J. Jia, P. H. Torr, and V. Koltun, “Point transformer,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16259–16268, 2021.
  28. M. Weinmann, B. Jutzi, and C. Mallet, “Feature relevance assessment for the semantic interpretation of 3D point cloud data,” ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. II-5/W2, pp. 313–318, 2013.
  29. T. Hackel, J. D. Wegner, and K. Schindler, “Contour Detection in Unstructured 3D Point Clouds,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1610–1618, 2016.
  30. H. Weiser, L. Winiwarter, V. Zahs, P. Weiser, K. Anders, and B. Höfle, “UAV-Photogrammetry, UAV laser scanning and terrestrial laser scanning point clouds of the inland dune in Sandhausen, Baden-Württemberg, Germany,” 2022.
  31. Natural Resources Commission - NSW Government and S. Gonzalez, “NSW forest monitoring and improvement program forest plot network ground based Lidar pilot,” 2022. https://portal.tern.org.au/metadata/23739.
  32. M. Pfennigbauer and A. Ullrich, “Improving quality of laser scanning data acquisition through calibrated amplitude and pulse deviation measurement,” in Laser Radar Technology and Applications XV (M. D. Turner and G. W. Kamerman, eds.), vol. 7684 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, p. 76841F, Apr. 2010.
  33. W. Zhang, J. Qi, P. Wan, H. Wang, D. Xie, X. Wang, and G. Yan, “An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation,” Remote Sensing, vol. 8, no. 6, 2016.
  34. O. Martin-Ducup, I. Mofack, Gislain, D. Wang, P. Raumonen, P. Ploton, B. Sonké, N. Barbier, P. Couteron, and R. Pélissier, “Evaluation of automated pipelines for tree and plot metric estimation from TLS data in tropical forest areas,” Annals of Botany, vol. 128, pp. 753–766, 04 2021.
  35. S. L. Smith, P.-J. Kindermans, and Q. V. Le, “Don’t Decay the Learning Rate, Increase the Batch Size,” in International Conference on Learning Representations (ICLR), 2018.
  36. J. Yao and M. Shepperd, “Assessing software defection prediction performance,” in Proceedings of the Evaluation and Assessment in Software Engineering, ACM, apr 2020.
  37. D. Chicco and G. Jurman, “The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation,” BMC Genomics, vol. 21, 01 2020.
  38. P. Branco, L. Torgo, and R. P. Ribeiro, “A Survey of Predictive Modeling on Imbalanced Domains,” ACM Comput. Surv., vol. 49, aug 2016.
  39. A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and F. Yu, “ShapeNet: An Information-Rich 3D Model Repository,” 2015.
  40. Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3D ShapeNets: A Deep Representation for Volumetric Shapes,” 2015.
  41. R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 580–587, 2014.
  42. Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel, “Backpropagation Applied to Handwritten Zip Code Recognition,” Neural Comput., vol. 1, p. 541–551, dec 1989.
  43. G. Qian, Y. Li, H. Peng, J. Mai, H. Hammoud, M. Elhoseiny, and B. Ghanem, “PointNeXt: Revisiting PointNet++ with Improved Training and Scaling Strategies,” in Advances in Neural Information Processing Systems (NeurIPS), 2022.
  44. Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, and M. Bennamoun, “Deep Learning for 3D Point Clouds: A Survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PP, pp. 1–1, 06 2020.
  45. C. H. Sudre, W. Li, T. Vercauteren, S. Ourselin, and M. J. Cardoso, “Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations,” in Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, pp. 240–248, Springer International Publishing, 2017.
  46. J. Wojtanowski, M. Zygmunt, M. Kaszczuk, Z. Mierczyk, and M. Muzal, “Comparison of 905 nm and 1550 nm semiconductor laser rangefinders’ performance deterioration due to adverse environmental conditions,” Opto-Electronics Review, vol. 22, no. 3, pp. 183–190, 2014.
  47. D. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” in International Conference on Learning Representations (ICLR), 2015.
  48. C. Liu and M. Belkin, “Accelerating SGD with momentum for over-parameterized learning,” in International Conference on Learning Representations (ICLR), 2020.
  49. D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs).,” in International Conference on Learning Representations, 2016.
  50. V. Nair and G. E. Hinton, “Rectified Linear Units Improve Restricted Boltzmann Machines,” in International Conference on Machine Learning, 2010.
  51. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch: An Imperative Style, High-Performance Deep Learning Library,” in Advances in Neural Information Processing Systems (NeurIPS) 32, pp. 8024–8035, Curran Associates, Inc., 2019.
Citations (4)

Summary

We haven't generated a summary for this paper yet.