Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Calibration of Transformer-based Models for Identifying Stress and Depression in Social Media (2305.16797v2)

Published 26 May 2023 in cs.CL

Abstract: In today's fast-paced world, the rates of stress and depression present a surge. Social media provide assistance for the early detection of mental health conditions. Existing methods mainly introduce feature extraction approaches and train shallow machine learning classifiers. Other researches use deep neural networks or transformers. Despite the fact that transformer-based models achieve noticeable improvements, they cannot often capture rich factual knowledge. Although there have been proposed a number of studies aiming to enhance the pretrained transformer-based models with extra information or additional modalities, no prior work has exploited these modifications for detecting stress and depression through social media. In addition, although the reliability of a machine learning model's confidence in its predictions is critical for high-risk applications, there is no prior work taken into consideration the model calibration. To resolve the above issues, we present the first study in the task of depression and stress detection in social media, which injects extra linguistic information in transformer-based models, namely BERT and MentalBERT. Specifically, the proposed approach employs a Multimodal Adaptation Gate for creating the combined embeddings, which are given as input to a BERT (or MentalBERT) model. For taking into account the model calibration, we apply label smoothing. We test our proposed approaches in three publicly available datasets and demonstrate that the integration of linguistic features into transformer-based models presents a surge in the performance. Also, the usage of label smoothing contributes to both the improvement of the model's performance and the calibration of the model. We finally perform a linguistic analysis of the posts and show differences in language between stressful and non-stressful texts, as well as depressive and non-depressive posts.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (78)
  1. W. H. O. (2023)., “Stress,” Available online at: https://www.who.int/news-room/questions-and-answers/item/stress, accessed: 2023-03-30.
  2. W. J. F. (2023)., “Types of Stress and Their Symptoms,” Available online at: https://www.mentalhelp.net/blogs/types-of-stress-and-their-symptoms/, accessed: 2023-03-30.
  3. W. H. O. (2021)., “Depression,” Available online at: https://www.who.int/news-room/fact-sheets/detail/depression, accessed: 2023-03-30.
  4. W. H. O. (2017)., “Depression and Other Common Mental Disorders,” Available online at: https://www.who.int/publications/i/item/depression-global-health-estimates, accessed: 2023-03-30.
  5. M. M. Tadesse, H. Lin, B. Xu, and L. Yang, “Detection of depression-related posts in reddit social media forum,” IEEE Access, vol. 7, pp. 44 883–44 893, 2019.
  6. S. Chandra Guntuku, A. Buffone, K. Jaidka, J. C. Eichstaedt, and L. H. Ungar, “Understanding and measuring psychological stress using social media,” Proceedings of the International AAAI Conference on Web and Social Media, vol. 13, no. 01, pp. 214–225, Jul. 2019.
  7. J. S. L. Figuerêdo, A. L. L. Maia, and R. T. Calumby, “Early depression detection in social media based on deep learning and underlying emotions,” Online Social Networks and Media, vol. 31, p. 100225, 2022.
  8. L. Ansari, S. Ji, Q. Chen, and E. Cambria, “Ensemble hybrid learning methods for automated depression detection,” IEEE Transactions on Computational Social Systems, pp. 1–9, 2022.
  9. N. Poerner, U. Waltinger, and H. Schütze, “E-BERT: Efficient-yet-effective entity embeddings for BERT,” in Findings of the Association for Computational Linguistics: EMNLP 2020.   Online: Association for Computational Linguistics, Nov. 2020, pp. 803–818.
  10. N. Kassner and H. Schütze, “Negated and misprimed probes for pretrained language models: Birds can talk, but cannot fly,” in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.   Online: Association for Computational Linguistics, Jul. 2020, pp. 7811–7818.
  11. N. Peinelt, M. Rei, and M. Liakata, “GiBERT: Enhancing BERT with linguistic information using a lightweight gated injection method,” in Findings of the Association for Computational Linguistics: EMNLP 2021.   Punta Cana, Dominican Republic: Association for Computational Linguistics, Nov. 2021, pp. 2322–2336.
  12. R. Wang, D. Tang, N. Duan, Z. Wei, X. Huang, J. Ji, G. Cao, D. Jiang, and M. Zhou, “K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters,” in Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021.   Online: Association for Computational Linguistics, Aug. 2021, pp. 1405–1418.
  13. M. E. Peters, M. Neumann, R. Logan, R. Schwartz, V. Joshi, S. Singh, and N. A. Smith, “Knowledge enhanced contextual word representations,” in Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP).   Hong Kong, China: Association for Computational Linguistics, Nov. 2019, pp. 43–54.
  14. A. P. Dawid, “The well-calibrated bayesian,” Journal of the American Statistical Association, vol. 77, no. 379, pp. 605–610, 1982.
  15. A. H. Murphy and E. S. Epstein, “Verification of probabilistic predictions: A brief review,” Journal of Applied Meteorology and Climatology, vol. 6, no. 5, pp. 748 – 755, 1967.
  16. C. S. Crowson, E. J. Atkinson, and T. M. Therneau, “Assessing calibration of prognostic risk scores,” Statistical Methods in Medical Research, vol. 25, no. 4, pp. 1692–1706, 2016, pMID: 23907781.
  17. X. Jiang, M. Osl, J. Kim, and L. Ohno-Machado, “Calibrating predictive model estimates to support personalized medicine,” Journal of the American Medical Informatics Association, vol. 19, no. 2, pp. 263–274, 10 2011.
  18. M. Raghu, K. Blumer, R. Sayres, Z. Obermeyer, B. Kleinberg, S. Mullainathan, and J. Kleinberg, “Direct uncertainty prediction for medical second opinions,” in Proceedings of the 36th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97.   PMLR, 09–15 Jun 2019, pp. 5281–5290.
  19. R. Sawhney, A. Neerkaje, and M. Gaur, “A risk-averse mechanism for suicidality assessment on social media,” in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers).   Dublin, Ireland: Association for Computational Linguistics, May 2022, pp. 628–635.
  20. L. Fiorillo, P. Favaro, and F. D. Faraci, “Deepsleepnet-lite: A simplified automatic sleep stage scoring model with uncertainty estimates,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 29, pp. 2076–2085, 2021.
  21. L. Liu, Y. Lu, Y. Luo, R. Zhang, L. Itti, and J. Lu, “Detecting “smart” spammers on social network: A topic model approach,” in Proceedings of the NAACL Student Research Workshop.   San Diego, California: Association for Computational Linguistics, Jun. 2016, pp. 45–50.
  22. W. Rahman, M. K. Hasan, S. Lee, A. Bagher Zadeh, C. Mao, L.-P. Morency, and E. Hoque, “Integrating multimodal information in large pretrained transformers,” in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.   Online: Association for Computational Linguistics, Jul. 2020, pp. 2359–2369.
  23. M. Jin and N. Aletras, “Complaint identification in social media with transformer networks,” in Proceedings of the 28th International Conference on Computational Linguistics.   Barcelona, Spain (Online): International Committee on Computational Linguistics, Dec. 2020, pp. 1765–1771.
  24. R. Müller, S. Kornblith, and G. E. Hinton, “When does label smoothing help?” in Advances in Neural Information Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32.   Curran Associates, Inc., 2019.
  25. S. Muñoz and C. A. Iglesias, “A text classification approach to detect psychological stress combining a lexicon-based feature framework with distributional representations,” Information Processing & Management, vol. 59, no. 5, p. 103011, 2022.
  26. E. Turcan and K. McKeown, “Dreaddit: A Reddit dataset for stress analysis in social media,” in Proceedings of the Tenth International Workshop on Health Text Mining and Information Analysis (LOUHI 2019).   Hong Kong: Association for Computational Linguistics, Nov. 2019, pp. 97–107.
  27. K. Yang, T. Zhang, and S. Ananiadou, “A mental state knowledge–aware and contrastive network for early stress and depression detection on social media,” Information Processing & Management, vol. 59, no. 4, p. 102961, 2022.
  28. G. I. Winata, O. P. Kampman, and P. Fung, “Attention-based lstm for psychological stress detection from spoken language using distant supervision,” in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018, pp. 6204–6208.
  29. H. Lin, J. Jia, J. Qiu, Y. Zhang, G. Shen, L. Xie, J. Tang, L. Feng, and T.-S. Chua, “Detecting stress based on social interactions in social networks,” IEEE Transactions on Knowledge and Data Engineering, vol. 29, no. 9, pp. 1820–1833, 2017.
  30. E. Turcan, S. Muresan, and K. McKeown, “Emotion-infused models for explainable psychological stress detection,” in Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies.   Online: Association for Computational Linguistics, Jun. 2021, pp. 2895–2909.
  31. J. Liu and M. Shi, “A hybrid feature selection and ensemble approach to identify depressed users in online social media,” Frontiers in Psychology, vol. 12, 2022.
  32. T. Nguyen, D. Phung, B. Dao, S. Venkatesh, and M. Berk, “Affective and content analysis of online depression communities,” IEEE Transactions on Affective Computing, vol. 5, no. 3, pp. 217–226, 2014.
  33. S. Tsugawa, Y. Kikuchi, F. Kishino, K. Nakajima, Y. Itoh, and H. Ohsaki, “Recognizing depression from twitter activity,” in Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, ser. CHI ’15.   New York, NY, USA: Association for Computing Machinery, 2015, p. 3187–3196.
  34. I. Pirina and Ç. Çöltekin, “Identifying depression on Reddit: The effect of training data,” in Proceedings of the 2018 EMNLP Workshop SMM4H: The 3rd Social Media Mining for Health Applications Workshop & Shared Task.   Brussels, Belgium: Association for Computational Linguistics, Oct. 2018, pp. 9–12.
  35. M. A. Wani, M. A. ELAffendi, K. A. Shakil, A. S. Imran, and A. A. A. El-Latif, “Depression screening in humans with ai and deep learning techniques,” IEEE Transactions on Computational Social Systems, pp. 1–0, 2022.
  36. J. Kim, J. Lee, E. Park, and J. Han, “A deep learning model for detecting mental illness from user content on social media,” Scientific reports, vol. 10, no. 1, pp. 1–6, 2020.
  37. U. Naseem, A. G. Dunn, J. Kim, and M. Khushi, “Early identification of depression severity levels on reddit using ordinal classification,” in Proceedings of the ACM Web Conference 2022, ser. WWW ’22.   New York, NY, USA: Association for Computing Machinery, 2022, p. 2563–2572.
  38. S. Ghosh and T. Anwar, “Depression intensity estimation via social media: A deep learning approach,” IEEE Transactions on Computational Social Systems, vol. 8, no. 6, pp. 1465–1474, 2021.
  39. H. Kour and M. K. Gupta, “An hybrid deep learning approach for depression prediction from user tweets using feature-rich cnn and bi-directional lstm,” Multimedia Tools and Applications, vol. 81, no. 17, pp. 23 649–23 685, 2022.
  40. H. Zogan, I. Razzak, S. Jameel, and G. Xu, “Hierarchical convolutional attention network for depression detection on social media and its impact during pandemic,” IEEE Journal of Biomedical and Health Informatics, pp. 1–9, 2023.
  41. L. Ren, H. Lin, B. Xu, S. Zhang, L. Yang, and S. Sun, “Depression detection on reddit with an emotion-based attention network: Algorithm development and validation,” JMIR Med Inform, vol. 9, no. 7, p. e28754, Jul 2021.
  42. M. Trotzek, S. Koitka, and C. M. Friedrich, “Utilizing neural networks and linguistic metadata for early detection of depression indications in text sequences,” IEEE Transactions on Knowledge and Data Engineering, vol. 32, no. 3, pp. 588–601, 2020.
  43. V. Borba de Souza, J. Campos Nobre, and K. Becker, “Dac stacking: A deep learning ensemble to classify anxiety, depression, and their comorbidity from reddit texts,” IEEE Journal of Biomedical and Health Informatics, vol. 26, no. 7, pp. 3303–3311, 2022.
  44. H. Zogan, I. Razzak, X. Wang, S. Jameel, and G. Xu, “Explainable depression detection with multi-aspect features using a hybrid deep learning model on social media,” World Wide Web, vol. 25, no. 1, pp. 281–304, 2022.
  45. A.-S. Uban, B. Chulvi, and P. Rosso, “An emotion and cognitive based analysis of mental health disorders from social media data,” Future Generation Computer Systems, vol. 124, pp. 480–494, 2021.
  46. H. Song, J. You, J.-W. Chung, and J. C. Park, “Feature attention network: Interpretable depression detection from social media,” in Proceedings of the 32nd Pacific Asia Conference on Language, Information and Computation.   Hong Kong: Association for Computational Linguistics, 1–3 Dec. 2018.
  47. S. Boinepelli, T. Raha, H. Abburi, P. Parikh, N. Chhaya, and V. Varma, “Leveraging mental health forums for user-level depression detection on social media,” in Proceedings of the Thirteenth Language Resources and Evaluation Conference.   Marseille, France: European Language Resources Association, Jun. 2022, pp. 5418–5427.
  48. K. Anantharaman, A. S, R. Sivanaiah, S. Madhavan, and S. M. Rajendram, “SSN_MLRG1@LT-EDI-ACL2022: Multi-class classification using BERT models for detecting depression signs from social media text,” in Proceedings of the Second Workshop on Language Technology for Equality, Diversity and Inclusion.   Dublin, Ireland: Association for Computational Linguistics, May 2022, pp. 296–300.
  49. F. Nilsson and G. Kovács, “FilipN@LT-EDI-ACL2022-detecting signs of depression from social media: Examining the use of summarization methods as data augmentation for text classification,” in Proceedings of the Second Workshop on Language Technology for Equality, Diversity and Inclusion.   Dublin, Ireland: Association for Computational Linguistics, May 2022, pp. 283–286.
  50. H. Zogan, I. Razzak, S. Jameel, and G. Xu, “Depressionnet: Learning multi-modalities with user post summarization for depression detection on social media,” in Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, ser. SIGIR ’21.   New York, NY, USA: Association for Computing Machinery, 2021, p. 133–142.
  51. S. Ghosh, A. Ekbal, and P. Bhattacharyya, “What does your bio say? inferring twitter users’ depression status from multimodal profile information using deep learning,” IEEE Transactions on Computational Social Systems, vol. 9, no. 5, pp. 1484–1494, 2022.
  52. Z. Li, Z. An, W. Cheng, J. Zhou, F. Zheng, and B. Hu, “Mha: a multimodal hierarchical attention model for depression detection in social media,” Health Information Science and Systems, vol. 11, no. 1, p. 6, 2023.
  53. J. C. Cheng and A. L. Chen, “Multimodal time-aware attention networks for depression detection,” Journal of Intelligent Information Systems, vol. 59, no. 2, pp. 319–339, 2022.
  54. G. Shen, J. Jia, L. Nie, F. Feng, C. Zhang, T. Hu, T.-S. Chua, and W. Zhu, “Depression detection via harvesting social media: A multimodal dictionary learning solution,” in Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17, 2017, pp. 3838–3844.
  55. T. Gui, L. Zhu, Q. Zhang, M. Peng, X. Zhou, K. Ding, and Z. Chen, “Cooperative multimodal approach to depression detection in twitter,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 110–117, Jul. 2019.
  56. D. Zhou, J. Yuan, and J. Si, “Health issue identification in social media based on multi-task hierarchical neural networks with topic attention,” Artificial Intelligence in Medicine, vol. 118, p. 102119, 2021.
  57. Y. Wang, Z. Wang, C. Li, Y. Zhang, and H. Wang, “Online social network individual depression detection using a multitask heterogenous modality fusion approach,” Information Sciences, vol. 609, pp. 727–749, 2022.
  58. S. M. Mohammad and P. D. Turney, “Crowdsourcing a word–emotion association lexicon,” Computational Intelligence, vol. 29, no. 3, pp. 436–465, 2013.
  59. J. W. Pennebaker, M. E. Francis, and R. J. Booth, “Linguistic inquiry and word count: Liwc 2001,” Mahway: Lawrence Erlbaum Associates, vol. 71, no. 2001, p. 2001, 2001.
  60. R. L. Boyd, A. Ashokkumar, S. Seraj, and J. W. Pennebaker, “The development and psychometric properties of liwc-22,” Austin, TX: University of Texas at Austin, 2022.
  61. D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” J. Mach. Learn. Res., vol. 3, no. null, p. 993–1022, mar 2003.
  62. D. Angelov, “Top2vec: Distributed representations of topics,” 2020.
  63. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers for language understanding,” in Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers).   Minneapolis, Minnesota: Association for Computational Linguistics, Jun. 2019, pp. 4171–4186.
  64. S. Ji, T. Zhang, L. Ansari, J. Fu, P. Tiwari, and E. Cambria, “MentalBERT: Publicly available pretrained language models for mental healthcare,” in Proceedings of the Thirteenth Language Resources and Evaluation Conference.   Marseille, France: European Language Resources Association, Jun. 2022, pp. 7184–7190.
  65. J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv preprint arXiv:1607.06450, 2016.
  66. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple way to prevent neural networks from overfitting,” Journal of Machine Learning Research, vol. 15, no. 56, pp. 1929–1958, 2014.
  67. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception architecture for computer vision,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2818–2826.
  68. T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. L. Scao, S. Gugger, M. Drame, Q. Lhoest, and A. M. Rush, “Transformers: State-of-the-art natural language processing,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations.   Online: Association for Computational Linguistics, Oct. 2020, pp. 38–45.
  69. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-performance deep learning library,” in Advances in Neural Information Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32.   Curran Associates, Inc., 2019.
  70. P. Mishra, M. Del Tredici, H. Yannakoudakis, and E. Shutova, “Author profiling for abuse detection,” in Proceedings of the 27th International Conference on Computational Linguistics.   Santa Fe, New Mexico, USA: Association for Computational Linguistics, Aug. 2018, pp. 1088–1098.
  71. M. P. Naeini, G. Cooper, and M. Hauskrecht, “Obtaining well calibrated probabilities using bayesian binning,” in Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.
  72. J. Nixon, M. W. Dusenberry, L. Zhang, G. Jerfel, and D. Tran, “Measuring calibration in deep learning,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2019.
  73. C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of modern neural networks,” in Proceedings of the 34th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, D. Precup and Y. W. Teh, Eds., vol. 70.   PMLR, 06–11 Aug 2017, pp. 1321–1330.
  74. L. Ilias and D. Askounis, “Explainable identification of dementia from transcripts using transformer networks,” IEEE Journal of Biomedical and Health Informatics, vol. 26, no. 8, pp. 4153–4164, 2022.
  75. Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: a practical and powerful approach to multiple testing,” Journal of the Royal statistical society: series B (Methodological), vol. 57, no. 1, pp. 289–300, 1995.
  76. J. W. Pennebaker and T. C. Lay, “Language use and personality during crises: Analyses of mayor rudolph giuliani’s press conferences,” Journal of Research in Personality, vol. 36, no. 3, pp. 271–282, 2002.
  77. M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep networks,” in Proceedings of the 34th International Conference on Machine Learning - Volume 70, ser. ICML’17.   JMLR.org, 2017, p. 3319–3328.
  78. Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation: Representing model uncertainty in deep learning,” in Proceedings of the 33rd International Conference on International Conference on Machine Learning - Volume 48, ser. ICML’16.   JMLR.org, 2016, p. 1050–1059.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Loukas Ilias (15 papers)
  2. Spiros Mouzakitis (10 papers)
  3. Dimitris Askounis (25 papers)
Citations (33)

Summary

We haven't generated a summary for this paper yet.