Strict monotonicity of the first $q$-eigenvalue of the fractional $p$-Laplace operator over annuli (2305.16672v3)
Abstract: Let $B, B'\subset \mathbb{R}d$ with $d\geq 2$ be two balls such that $B'\subset \subset B$ and the position of $B'$ is varied within $B$. For $p\in (1, \infty ),$ $s\in (0,1)$, and $q \in [1, p*_s)$ with $p*_s=\frac{dp}{d-sp}$ if $sp < d$ and $p*_s=\infty $ if $sp \geq d$, let $\lambda s_{p,q}(B\setminus \overline{B'})$ be the first $q$-eigenvalue of the fractional $p$-Laplace operator $(-\Delta p)s$ in $B\setminus \overline{B'}$ with the homogeneous nonlocal Dirichlet boundary conditions. We prove that $\lambda s{p,q}(B\setminus \overline{B'})$ strictly decreases as the inner ball $B'$ moves towards the outer boundary $\partial B$. To obtain this strict monotonicity, we establish a strict Faber-Krahn type inequality for $\lambda _{p,q}s(\cdot )$ under polarization. This extends some monotonicity results obtained by Djitte-Fall-Weth (Calc. Var. Partial Differential Equations, 60:231, 2021) in the case of $(-\Delta )s$ and $q=1, 2$ to $(-\Delta _p)s$ and $q\in [1, p*_s).$ Additionally, we provide the strict monotonicity results for the general domains that are difference of Steiner symmetric or foliated Schwarz symmetric sets in $\mathbb{R}d$.
- L. V. Ahlfors. Conformal invariants: topics in geometric function theory. McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973.
- T. V. Anoop and K. Ashok Kumar. Domain variations of the first eigenvalue via a strict Faber-Krahn type inequality. Adv. Differential Equations, 28(7-8):537–568, 2023. https://doi.org/10.57262/ade028-0708-537.
- On the strict monotonicity of the first eigenvalue of the p𝑝pitalic_p-Laplacian on annuli. Trans. Amer. Math. Soc., 370(10):7181–7199, 2018. https://doi.org/10.1090/tran/7241.
- A shape variation result via the geometry of eigenfunctions. J. Differential Equations, 298:430–462, 2021. https://doi.org/10.1016/j.jde.2021.07.001.
- A. Baernstein, II. A unified approach to symmetrization. In Partial differential equations of elliptic type (Cortona, 1992), Sympos. Math., XXXV, pages 47–91. Cambridge Univ. Press, Cambridge, 1994.
- W. Beckner. Sobolev inequalities, the Poisson semigroup, and analysis on the sphere 𝕊nsuperscript𝕊𝑛\mathbb{S}^{n}roman_𝕊 start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. Proc. Nat. Acad. Sci. U.S.A., 89(11):4816–4819, 1992. https://doi.org/10.1073/pnas.89.11.4816.
- N. Biswas and F. Sk. On generalized eigenvalue problems of fractional (p,q)𝑝𝑞(p,q)( italic_p , italic_q )-Laplace operator with two parameters. (preprint), page 31, 2022. https://doi.org/10.48550/arXiv.2212.05930.
- On the optimization of the first weighted eigenvalue. Proc. Roy. Soc. Edinburgh Sect. A, pages 1–28, 2022. https://doi.org/10.1017/prm.2022.60.
- V. Bobkov and S. Kolonitskii. On a property of the nodal set of least energy sign-changing solutions for quasilinear elliptic equations. Proc. Roy. Soc. Edinburgh Sect. A, 149(5):1163–1173, 2019. https://doi.org/10.1017/prm.2018.88.
- V. Bobkov and S. Kolonitskii. On qualitative properties of solutions for elliptic problems with the p𝑝pitalic_p-Laplacian through domain perturbations. Comm. Partial Differential Equations, 45(3):230–252, 2020. https://doi.org/10.1080/03605302.2019.1670674.
- L. Brasco and G. Franzina. Convexity properties of Dirichlet integrals and Picone-type inequalities. Kodai Math. J., 37(3):769–799, 2014. https://doi.org/10.2996/kmj/1414674621.
- The fractional Cheeger problem. Interfaces Free Bound., 16(3):419–458, 2014. https://doi.org/10.4171/IFB/325.
- F. Brock. Positivity and radial symmetry of solutions to some variational problems in ℝNsuperscriptℝ𝑁\mathbb{R}^{N}roman_ℝ start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT. J. Math. Anal. Appl., 296(1):226–243, 2004. https://doi.org/10.1016/j.jmaa.2004.04.006.
- W. Chen and C. Li. Maximum principles for the fractional p𝑝pitalic_p-Laplacian and symmetry of solutions. Adv. Math., 335:735–758, 2018. https://doi.org/10.1016/j.aim.2018.07.016.
- G. Chiti. Rearrangements of functions and convergence in Orlicz spaces. Applicable Anal., 9(1):23–27, 1979. https://doi.org/10.1080/00036817908839248.
- A Pólya-Szegö principle for general fractional Orlicz-Sobolev spaces. Complex Var. Elliptic Equ., 66(4):546–568, 2021. https://doi.org/10.1080/17476933.2020.1729139.
- A fractional Hadamard formula and applications. Calc. Var. Partial Differential Equations, 60(6):Paper No. 231, 31, 2021. https://doi.org/10.1007/s00526-021-02094-3.
- G. Franzina. Non-local torsion functions and embeddings. Appl. Anal., 98(10):1811–1826, 2019. https://doi.org/10.1080/00036811.2018.1463521.
- On the placement of an obstacle or a well so as to optimize the fundamental eigenvalue. SIAM J. Math. Anal., 33(1):240–259, 2001. https://doi.org/10.1137/S0036141099357574.
- J. Hersch. The method of interior parallels applied to polygonal or multiply connected membranes. Pacific J. Math., 13:1229–1238, 1963. http://projecteuclid.org/euclid.pjm/1103034558.
- Global Hölder regularity for the fractional p𝑝pitalic_p-Laplacian. Rev. Mat. Iberoam., 32(4):1353–1392, 2016. https://doi.org/10.4171/RMI/921.
- S. Jarohs and T. Weth. Symmetry via antisymmetric maximum principles in nonlocal problems of variable order. Ann. Mat. Pura Appl. (4), 195(1):273–291, 2016. https://doi.org/10.1007/s10231-014-0462-y.
- S. Kesavan. On two functionals connected to the Laplacian in a class of doubly connected domains. Proc. Roy. Soc. Edinburgh Sect. A, 133(3):617–624, 2003. https://doi.org/10.1017/S0308210500002560.
- B. Sciunzi. Regularity and comparison principles for p𝑝pitalic_p-Laplace equations with vanishing source term. Commun. Contemp. Math., 16(6):1450013, 20, 2014. https://doi.org/10.1142/S0219199714500138.
- A. Y. Solynin. Continuous symmetrization via polarization. Algebra i Analiz, 24(1):157–222, 2012. https://doi.org/10.1090/S1061-0022-2012-01234-3.
- T. Weth. Symmetry of solutions to variational problems for nonlinear elliptic equations via reflection methods. Jahresber. Dtsch. Math.-Ver., 112(3):119–158, 2010. https://doi.org/10.1365/s13291-010-0005-4.
- V. Wolontis. Properties of conformal invariants. Amer. J. Math., 74:587–606, 1952. https://doi.org/10.2307/2372264.