Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Strict monotonicity of the first $q$-eigenvalue of the fractional $p$-Laplace operator over annuli (2305.16672v3)

Published 26 May 2023 in math.AP, math-ph, math.MP, and math.OC

Abstract: Let $B, B'\subset \mathbb{R}d$ with $d\geq 2$ be two balls such that $B'\subset \subset B$ and the position of $B'$ is varied within $B$. For $p\in (1, \infty ),$ $s\in (0,1)$, and $q \in [1, p*_s)$ with $p*_s=\frac{dp}{d-sp}$ if $sp < d$ and $p*_s=\infty $ if $sp \geq d$, let $\lambda s_{p,q}(B\setminus \overline{B'})$ be the first $q$-eigenvalue of the fractional $p$-Laplace operator $(-\Delta p)s$ in $B\setminus \overline{B'}$ with the homogeneous nonlocal Dirichlet boundary conditions. We prove that $\lambda s{p,q}(B\setminus \overline{B'})$ strictly decreases as the inner ball $B'$ moves towards the outer boundary $\partial B$. To obtain this strict monotonicity, we establish a strict Faber-Krahn type inequality for $\lambda _{p,q}s(\cdot )$ under polarization. This extends some monotonicity results obtained by Djitte-Fall-Weth (Calc. Var. Partial Differential Equations, 60:231, 2021) in the case of $(-\Delta )s$ and $q=1, 2$ to $(-\Delta _p)s$ and $q\in [1, p*_s).$ Additionally, we provide the strict monotonicity results for the general domains that are difference of Steiner symmetric or foliated Schwarz symmetric sets in $\mathbb{R}d$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. L. V. Ahlfors. Conformal invariants: topics in geometric function theory. McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973.
  2. T. V. Anoop and K. Ashok Kumar. Domain variations of the first eigenvalue via a strict Faber-Krahn type inequality. Adv. Differential Equations, 28(7-8):537–568, 2023. https://doi.org/10.57262/ade028-0708-537.
  3. On the strict monotonicity of the first eigenvalue of the p𝑝pitalic_p-Laplacian on annuli. Trans. Amer. Math. Soc., 370(10):7181–7199, 2018. https://doi.org/10.1090/tran/7241.
  4. A shape variation result via the geometry of eigenfunctions. J. Differential Equations, 298:430–462, 2021. https://doi.org/10.1016/j.jde.2021.07.001.
  5. A. Baernstein, II. A unified approach to symmetrization. In Partial differential equations of elliptic type (Cortona, 1992), Sympos. Math., XXXV, pages 47–91. Cambridge Univ. Press, Cambridge, 1994.
  6. W. Beckner. Sobolev inequalities, the Poisson semigroup, and analysis on the sphere 𝕊nsuperscript𝕊𝑛\mathbb{S}^{n}roman_𝕊 start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. Proc. Nat. Acad. Sci. U.S.A., 89(11):4816–4819, 1992. https://doi.org/10.1073/pnas.89.11.4816.
  7. N. Biswas and F. Sk. On generalized eigenvalue problems of fractional (p,q)𝑝𝑞(p,q)( italic_p , italic_q )-Laplace operator with two parameters. (preprint), page 31, 2022. https://doi.org/10.48550/arXiv.2212.05930.
  8. On the optimization of the first weighted eigenvalue. Proc. Roy. Soc. Edinburgh Sect. A, pages 1–28, 2022. https://doi.org/10.1017/prm.2022.60.
  9. V. Bobkov and S. Kolonitskii. On a property of the nodal set of least energy sign-changing solutions for quasilinear elliptic equations. Proc. Roy. Soc. Edinburgh Sect. A, 149(5):1163–1173, 2019. https://doi.org/10.1017/prm.2018.88.
  10. V. Bobkov and S. Kolonitskii. On qualitative properties of solutions for elliptic problems with the p𝑝pitalic_p-Laplacian through domain perturbations. Comm. Partial Differential Equations, 45(3):230–252, 2020. https://doi.org/10.1080/03605302.2019.1670674.
  11. L. Brasco and G. Franzina. Convexity properties of Dirichlet integrals and Picone-type inequalities. Kodai Math. J., 37(3):769–799, 2014. https://doi.org/10.2996/kmj/1414674621.
  12. The fractional Cheeger problem. Interfaces Free Bound., 16(3):419–458, 2014. https://doi.org/10.4171/IFB/325.
  13. F. Brock. Positivity and radial symmetry of solutions to some variational problems in ℝNsuperscriptℝ𝑁\mathbb{R}^{N}roman_ℝ start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT. J. Math. Anal. Appl., 296(1):226–243, 2004. https://doi.org/10.1016/j.jmaa.2004.04.006.
  14. W. Chen and C. Li. Maximum principles for the fractional p𝑝pitalic_p-Laplacian and symmetry of solutions. Adv. Math., 335:735–758, 2018. https://doi.org/10.1016/j.aim.2018.07.016.
  15. G. Chiti. Rearrangements of functions and convergence in Orlicz spaces. Applicable Anal., 9(1):23–27, 1979. https://doi.org/10.1080/00036817908839248.
  16. A Pólya-Szegö principle for general fractional Orlicz-Sobolev spaces. Complex Var. Elliptic Equ., 66(4):546–568, 2021. https://doi.org/10.1080/17476933.2020.1729139.
  17. A fractional Hadamard formula and applications. Calc. Var. Partial Differential Equations, 60(6):Paper No. 231, 31, 2021. https://doi.org/10.1007/s00526-021-02094-3.
  18. G. Franzina. Non-local torsion functions and embeddings. Appl. Anal., 98(10):1811–1826, 2019. https://doi.org/10.1080/00036811.2018.1463521.
  19. On the placement of an obstacle or a well so as to optimize the fundamental eigenvalue. SIAM J. Math. Anal., 33(1):240–259, 2001. https://doi.org/10.1137/S0036141099357574.
  20. J. Hersch. The method of interior parallels applied to polygonal or multiply connected membranes. Pacific J. Math., 13:1229–1238, 1963. http://projecteuclid.org/euclid.pjm/1103034558.
  21. Global Hölder regularity for the fractional p𝑝pitalic_p-Laplacian. Rev. Mat. Iberoam., 32(4):1353–1392, 2016. https://doi.org/10.4171/RMI/921.
  22. S. Jarohs and T. Weth. Symmetry via antisymmetric maximum principles in nonlocal problems of variable order. Ann. Mat. Pura Appl. (4), 195(1):273–291, 2016. https://doi.org/10.1007/s10231-014-0462-y.
  23. S. Kesavan. On two functionals connected to the Laplacian in a class of doubly connected domains. Proc. Roy. Soc. Edinburgh Sect. A, 133(3):617–624, 2003. https://doi.org/10.1017/S0308210500002560.
  24. B. Sciunzi. Regularity and comparison principles for p𝑝pitalic_p-Laplace equations with vanishing source term. Commun. Contemp. Math., 16(6):1450013, 20, 2014. https://doi.org/10.1142/S0219199714500138.
  25. A. Y. Solynin. Continuous symmetrization via polarization. Algebra i Analiz, 24(1):157–222, 2012. https://doi.org/10.1090/S1061-0022-2012-01234-3.
  26. T. Weth. Symmetry of solutions to variational problems for nonlinear elliptic equations via reflection methods. Jahresber. Dtsch. Math.-Ver., 112(3):119–158, 2010. https://doi.org/10.1365/s13291-010-0005-4.
  27. V. Wolontis. Properties of conformal invariants. Amer. J. Math., 74:587–606, 1952. https://doi.org/10.2307/2372264.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets