Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Simple smooth modules over the superconformal current algebra (2305.16662v2)

Published 26 May 2023 in math.RT, math-ph, math.MP, math.QA, and math.RA

Abstract: In this paper, we classify simple smooth modules over the superconformal current algebra $\frak g$. More precisely, we first classify simple smooth modules over the Heisenberg-Clifford algebra, and then prove that any simple smooth $\frak g$-module is a tensor product of such modules for the super Virasoro algebra and the Heisenberg-Clifford algebra, or an induced module from a simple module over some finite-dimensional solvable Lie superalgebras. As a byproduct, we provide characterizations for both simple highest weight $\frak g$-modules and simple Whittaker $\frak g$-modules. Additionally, we present several examples of simple smooth $\frak g$-modules that are not tensor product of modules over the super Virasoro algebra and the Heisenberg-Clifford algebra.

Citations (3)

Summary

We haven't generated a summary for this paper yet.