Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptively Perturbed Mirror Descent for Learning in Games (2305.16610v5)

Published 26 May 2023 in cs.GT and cs.LG

Abstract: This paper proposes a payoff perturbation technique for the Mirror Descent (MD) algorithm in games where the gradient of the payoff functions is monotone in the strategy profile space, potentially containing additive noise. The optimistic family of learning algorithms, exemplified by optimistic MD, successfully achieves {\it last-iterate} convergence in scenarios devoid of noise, leading the dynamics to a Nash equilibrium. A recent re-emerging trend underscores the promise of the perturbation approach, where payoff functions are perturbed based on the distance from an anchoring, or {\it slingshot}, strategy. In response, we propose {\it Adaptively Perturbed MD} (APMD), which adjusts the magnitude of the perturbation by repeatedly updating the slingshot strategy at a predefined interval. This innovation empowers us to find a Nash equilibrium of the underlying game with guaranteed rates. Empirical demonstrations affirm that our algorithm exhibits significantly accelerated convergence.

Citations (3)

Summary

We haven't generated a summary for this paper yet.