Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uncovering and Categorizing Social Biases in Text-to-SQL (2305.16253v2)

Published 25 May 2023 in cs.CL

Abstract: Content Warning: This work contains examples that potentially implicate stereotypes, associations, and other harms that could be offensive to individuals in certain social groups.} Large pre-trained LLMs are acknowledged to carry social biases towards different demographics, which can further amplify existing stereotypes in our society and cause even more harm. Text-to-SQL is an important task, models of which are mainly adopted by administrative industries, where unfair decisions may lead to catastrophic consequences. However, existing Text-to-SQL models are trained on clean, neutral datasets, such as Spider and WikiSQL. This, to some extent, cover up social bias in models under ideal conditions, which nevertheless may emerge in real application scenarios. In this work, we aim to uncover and categorize social biases in Text-to-SQL models. We summarize the categories of social biases that may occur in structured data for Text-to-SQL models. We build test benchmarks and reveal that models with similar task accuracy can contain social biases at very different rates. We show how to take advantage of our methodology to uncover and assess social biases in the downstream Text-to-SQL task. We will release our code and data.

Citations (6)

Summary

We haven't generated a summary for this paper yet.