Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

IDEA: Invariant Defense for Graph Adversarial Robustness (2305.15792v2)

Published 25 May 2023 in cs.LG and cs.CR

Abstract: Despite the success of graph neural networks (GNNs), their vulnerability to adversarial attacks poses tremendous challenges for practical applications. Existing defense methods suffer from severe performance decline under unseen attacks, due to either limited observed adversarial examples or pre-defined heuristics. To address these limitations, we analyze the causalities in graph adversarial attacks and conclude that causal features are key to achieve graph adversarial robustness, owing to their determinedness for labels and invariance across attacks. To learn these causal features, we innovatively propose an Invariant causal DEfense method against adversarial Attacks (IDEA). We derive node-based and structure-based invariance objectives from an information-theoretic perspective. IDEA ensures strong predictability for labels and invariant predictability across attacks, which is provably a causally invariant defense across various attacks. Extensive experiments demonstrate that IDEA attains state-of-the-art defense performance under all five attacks on all five datasets. The implementation of IDEA is available at https://anonymous.4open.science/r/IDEA.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com