Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Ante-hoc Graph Explainer using Bilevel Optimization (2305.15745v2)

Published 25 May 2023 in cs.LG and cs.SI

Abstract: Explaining the decisions made by machine learning models for high-stakes applications is critical for increasing transparency and guiding improvements to these decisions. This is particularly true in the case of models for graphs, where decisions often depend on complex patterns combining rich structural and attribute data. While recent work has focused on designing so-called post-hoc explainers, the broader question of what constitutes a good explanation remains open. One intuitive property is that explanations should be sufficiently informative to reproduce the predictions given the data. In other words, a good explainer can be repurposed as a predictor. Post-hoc explainers do not achieve this goal as their explanations are highly dependent on fixed model parameters (e.g., learned GNN weights). To address this challenge, we propose RAGE (Robust Ante-hoc Graph Explainer), a novel and flexible ante-hoc explainer designed to discover explanations for graph neural networks using bilevel optimization, with a focus on the chemical domain. RAGE can effectively identify molecular substructures that contain the full information needed for prediction while enabling users to rank these explanations in terms of relevance. Our experiments on various molecular classification tasks show that RAGE explanations are better than existing post-hoc and ante-hoc approaches.

Citations (6)

Summary

We haven't generated a summary for this paper yet.