Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Privacy Protectability: An Information-theoretical Approach (2305.15697v1)

Published 25 May 2023 in cs.CR, cs.AI, and cs.MM

Abstract: Recently, inference privacy has attracted increasing attention. The inference privacy concern arises most notably in the widely deployed edge-cloud video analytics systems, where the cloud needs the videos captured from the edge. The video data can contain sensitive information and subject to attack when they are transmitted to the cloud for inference. Many privacy protection schemes have been proposed. Yet, the performance of a scheme needs to be determined by experiments or inferred by analyzing the specific case. In this paper, we propose a new metric, \textit{privacy protectability}, to characterize to what degree a video stream can be protected given a certain video analytics task. Such a metric has strong operational meaning. For example, low protectability means that it may be necessary to set up an overall secure environment. We can also evaluate a privacy protection scheme, e.g., assume it obfuscates the video data, what level of protection this scheme has achieved after obfuscation. Our definition of privacy protectability is rooted in information theory and we develop efficient algorithms to estimate the metric. We use experiments on real data to validate that our metric is consistent with empirical measurements on how well a video stream can be protected for a video analytics task.

Summary

We haven't generated a summary for this paper yet.