Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FedHC: A Scalable Federated Learning Framework for Heterogeneous and Resource-Constrained Clients (2305.15668v1)

Published 25 May 2023 in cs.DC

Abstract: Federated Learning (FL) is a distributed learning paradigm that empowers edge devices to collaboratively learn a global model leveraging local data. Simulating FL on GPU is essential to expedite FL algorithm prototyping and evaluations. However, current FL frameworks overlook the disparity between algorithm simulation and real-world deployment, which arises from heterogeneous computing capabilities and imbalanced workloads, thus misleading evaluations of new algorithms. Additionally, they lack flexibility and scalability to accommodate resource-constrained clients. In this paper, we present FedHC, a scalable federated learning framework for heterogeneous and resource-constrained clients. FedHC realizes system heterogeneity by allocating a dedicated and constrained GPU resource budget to each client, and also simulates workload heterogeneity in terms of framework-provided runtime. Furthermore, we enhance GPU resource utilization for scalable clients by introducing a dynamic client scheduler, process manager, and resource-sharing mechanism. Our experiments demonstrate that FedHC has the capability to capture the influence of various factors on client execution time. Moreover, despite resource constraints for each client, FedHC achieves state-of-the-art efficiency compared to existing frameworks without limits. When subjecting existing frameworks to the same resource constraints, FedHC achieves a 2.75x speedup. Code has been released on https://github.com/if-lab-repository/FedHC.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Min Zhang (630 papers)
  2. Fuxun Yu (39 papers)
  3. Yongbo Yu (5 papers)
  4. Minjia Zhang (54 papers)
  5. Ang Li (472 papers)
  6. Xiang Chen (343 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.