Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fantastic DNN Classifiers and How to Identify them without Data (2305.15563v1)

Published 24 May 2023 in cs.LG

Abstract: Current algorithms and architecture can create excellent DNN classifier models from example data. In general, larger training datasets result in better model estimations, which improve test performance. Existing methods for predicting generalization performance are based on hold-out test examples. To the best of our knowledge, at present no method exists that can estimate the quality of a trained DNN classifier without test data. In this paper, we show that the quality of a trained DNN classifier can be assessed without any example data. We consider DNNs to be composed of a feature extractor and a feature classifier; the feature extractor's output is fed to the classifier. The proposed method iteratively creates class prototypes in the input space for each class by minimizing a cross-entropy loss function at the output of the network. We use these prototypes and their feature relationships to reveal the quality of the classifier. We have developed two metrics: one using the features of the prototypes and the other using adversarial examples corresponding to each prototype. Empirical evaluations show that accuracy obtained from test examples is directly proportional to quality measures obtained from the proposed metrics. We report our observations for ResNet18 with Tiny ImageNet, CIFAR100, and CIFAR10 datasets. The proposed metrics can be used to compare performances of two or more classifiers without test examples.

Citations (1)

Summary

We haven't generated a summary for this paper yet.