Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Examination of the Robustness of Reference-Free Image Captioning Evaluation Metrics (2305.14998v2)

Published 24 May 2023 in cs.CL, cs.AI, cs.CV, and cs.LG

Abstract: Recently, reference-free metrics such as CLIPScore (Hessel et al., 2021), UMIC (Lee et al., 2021), and PAC-S (Sarto et al., 2023) have been proposed for automatic reference-free evaluation of image captions. Our focus lies in evaluating the robustness of these metrics in scenarios that require distinguishing between two captions with high lexical overlap but very different meanings. Our findings reveal that despite their high correlation with human judgments, CLIPScore, UMIC, and PAC-S struggle to identify fine-grained errors. While all metrics exhibit strong sensitivity to visual grounding errors, their sensitivity to caption implausibility errors is limited. Furthermore, we found that all metrics are sensitive to variations in the size of image-relevant objects mentioned in the caption, while CLIPScore and PAC-S are also sensitive to the number of mentions of image-relevant objects in the caption. Regarding linguistic aspects of a caption, all metrics show weak comprehension of negation, and CLIPScore and PAC-S are insensitive to the structure of the caption to a great extent. We hope our findings will guide further improvements in reference-free evaluation of image captioning.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Saba Ahmadi (15 papers)
  2. Aishwarya Agrawal (28 papers)
Citations (3)