Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Do prompt positions really matter? (2305.14493v4)

Published 23 May 2023 in cs.CL

Abstract: Prompt-based models have gathered a lot of attention from researchers due to their remarkable advancements in the fields of zero-shot and few-shot learning. Developing an effective prompt template plays a critical role. However, prior studies have mainly focused on prompt vocabulary searching or embedding initialization within a predefined template with the prompt position fixed. In this empirical study, we conduct the most comprehensive analysis to date of prompt position for diverse NLP tasks. Our findings quantify the substantial impact prompt position has on model performance. We observe that the prompt positions used in prior studies are often sub-optimal, and this observation is consistent even in widely used instruction-tuned models. These findings suggest prompt position optimisation as a valuable research direction to augment prompt engineering methodologies and prompt position-aware instruction tuning as a potential way to build more robust models in the future.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com