Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

From Shockwaves to the Gravitational Memory Effect (2305.14411v2)

Published 23 May 2023 in hep-th, gr-qc, and hep-ph

Abstract: We study the relationship between shockwave geometries and the gravitational memory effect in four-dimensional asymptotically flat spacetime. In particular, we show the 't Hooft commutation relations of shockwave operators are equivalent to the commutation relation between soft and Goldstone modes parametrizing a sector of the gravitational phase space. We demonstrate this equivalence via a diffeomorphism that takes a shockwave metric to a metric whose transverse traceless component is the gravitational memory. The shockwave momentum in 't Hooft's analysis is related to the soft graviton mode, which is responsible for the memory effect, while the shift in the shockwave position is related to the Goldstone mode. This equivalence opens new directions to utilize the gravitational memory effect to explore the observational implications of shockwave geometries in flat space.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (82)
  1. Y. B. Zel’dovich and A. G. Polnarev, “Radiation of gravitational waves by a cluster of superdense stars,” Sov. Astron. Lett. 18 (Aug., 1974) 17.
  2. V. B. Braginsky and L. P. Grishchuk, “Kinematic Resonance and Memory Effect in Free Mass Gravitational Antennas,” Sov. Phys. JETP 62 (1985) 427–430.
  3. V. B. Braginsky and K. S. Thorne, “Gravitational-wave bursts with memory and experimental prospects,” Nature 327 no. 6118, (1987) 123–125. https://doi.org/10.1038/327123a0.
  4. M. Ludvigsen, “Geodesic Deviation at Null Infinity and the Physical Effects of Very Long Wave Gravitational Radiation,” Gen. Rel. Grav. 21 (1989) 1205–1212.
  5. D. Christodoulou, “Nonlinear nature of gravitation and gravitational wave experiments,” Phys. Rev. Lett. 67 (1991) 1486–1489.
  6. A. G. Wiseman and C. M. Will, “Christodoulou’s nonlinear gravitational wave memory: Evaluation in the quadrupole approximation,” Phys. Rev. D 44 no. 10, (1991) R2945–R2949.
  7. K. S. Thorne, “Gravitational-wave bursts with memory: The christodoulou effect,” Phys. Rev. D 45 (Jan, 1992) 520–524.
  8. A. Strominger and A. Zhiboedov, “Gravitational Memory, BMS Supertranslations and Soft Theorems,” JHEP 01 (2016) 086, arXiv:1411.5745 [hep-th].
  9. A. Strominger, “Lectures on the Infrared Structure of Gravity and Gauge Theory,” arXiv:1703.05448 [hep-th].
  10. G. ’t Hooft, “The Scattering matrix approach for the quantum black hole: An Overview,” Int. J. Mod. Phys. A 11 (1996) 4623–4688, arXiv:gr-qc/9607022.
  11. G. ’t Hooft, “Graviton Dominance in Ultrahigh-Energy Scattering,” Phys. Lett. B 198 (1987) 61–63.
  12. D. Amati, M. Ciafaloni, and G. Veneziano, “Classical and Quantum Gravity Effects from Planckian Energy Superstring Collisions,” Int. J. Mod. Phys. A 3 (1988) 1615–1661.
  13. H. L. Verlinde and E. P. Verlinde, “Scattering at Planckian energies,” Nucl. Phys. B 371 (1992) 246–268, arXiv:hep-th/9110017.
  14. D. N. Kabat and M. Ortiz, “Eikonal quantum gravity and Planckian scattering,” Nucl. Phys. B 388 (1992) 570–592, arXiv:hep-th/9203082.
  15. Y. Kiem, H. L. Verlinde, and E. P. Verlinde, “Black hole horizons and complementarity,” Phys. Rev. D 52 (1995) 7053–7065, arXiv:hep-th/9502074.
  16. S. H. Shenker and D. Stanford, “Black holes and the butterfly effect,” JHEP 03 (2014) 067, arXiv:1306.0622 [hep-th].
  17. R. Akhoury, “Unitary S Matrices With Long-Range Correlations and the Quantum Black Hole,” JHEP 08 (2014) 169, arXiv:1311.5613 [hep-th].
  18. S. H. Shenker and D. Stanford, “Multiple Shocks,” JHEP 12 (2014) 046, arXiv:1312.3296 [hep-th].
  19. L. Cornalba, M. S. Costa, J. Penedones, and R. Schiappa, “Eikonal Approximation in AdS/CFT: From Shock Waves to Four-Point Functions,” JHEP 08 (2007) 019, arXiv:hep-th/0611122.
  20. J. Polchinski, “Chaos in the black hole S-matrix,” arXiv:1505.08108 [hep-th].
  21. Y. Ahn, V. Jahnke, H.-S. Jeong, and K.-Y. Kim, “Scrambling in Hyperbolic Black Holes: shock waves and pole-skipping,” JHEP 10 (2019) 257, arXiv:1907.08030 [hep-th].
  22. N. Gaddam and N. Groenenboom, “Soft graviton exchange and the information paradox,” arXiv:2012.02355 [hep-th].
  23. N. Gaddam and N. Groenenboom, “2 to 2N scattering: Eikonalisation and the Page curve,” JHEP 01 (2022) 146, arXiv:2110.14673 [hep-th].
  24. N. Gaddam and N. Groenenboom, “A toolbox for black hole scattering,” arXiv:2207.11277 [hep-th].
  25. E. P. Verlinde and K. M. Zurek, “Observational signatures of quantum gravity in interferometers,” Phys. Lett. B 822 (2021) 136663, arXiv:1902.08207 [gr-qc].
  26. E. Verlinde and K. M. Zurek, “Modular fluctuations from shockwave geometries,” Phys. Rev. D 106 no. 10, (2022) 106011, arXiv:2208.01059 [hep-th].
  27. Y. Zhang and K. M. Zurek, “Stochastic Description of Near-Horizon Fluctuations in Rindler-AdS,” arXiv:2304.12349 [hep-th].
  28. T. He, V. Lysov, P. Mitra, and A. Strominger, “BMS supertranslations and Weinbergs soft graviton theorem,” JHEP 05 (2015) 151, arXiv:1401.7026 [hep-th].
  29. P. C. Aichelburg and R. U. Sexl, “On the gravitational field of a massless particle,” General Relativity and Gravitation 2 no. 4, (1971) 303–312. https://doi.org/10.1007/BF00758149.
  30. T. Dray and G. ’t Hooft, “The gravitational shock wave of a massless particle,” Nuclear Physics B 253 (1985) 173–188. https://www.sciencedirect.com/science/article/pii/0550321385905255.
  31. K. Sfetsos, “On gravitational shock waves in curved space-times,” Nucl. Phys. B 436 (1995) 721–745, arXiv:hep-th/9408169.
  32. A. Cristofoli, “Gravitational shock waves and scattering amplitudes,” JHEP 11 (2020) 160, arXiv:2006.08283 [hep-th].
  33. G. ’t Hooft, “The black hole interpretation of string theory,” Nucl. Phys. B 335 (1990) 138–154.
  34. A. Tolish and R. M. Wald, “Retarded Fields of Null Particles and the Memory Effect,” Phys. Rev. D 89 no. 6, (2014) 064008, arXiv:1401.5831 [gr-qc].
  35. D. Kapec, A.-M. Raclariu, and A. Strominger, “Area, Entanglement Entropy and Supertranslations at Null Infinity,” Class. Quant. Grav. 34 no. 16, (2017) 165007, arXiv:1603.07706 [hep-th].
  36. E. Verlinde and K. M. Zurek, “Spacetime Fluctuations in AdS/CFT,” JHEP 04 (2020) 209, arXiv:1911.02018 [hep-th].
  37. T. Banks and K. M. Zurek, “Conformal description of near-horizon vacuum states,” Phys. Rev. D 104 no. 12, (2021) 126026, arXiv:2108.04806 [hep-th].
  38. 1972.
  39. L. Freidel and D. Pranzetti, “Gravity from symmetry: duality and impulsive waves,” Journal of High Energy Physics 2022 no. 4, (Apr., 2022) 125, arXiv:2109.06342 [hep-th].
  40. L. Freidel, M. Geiller, and D. Pranzetti, “Edge modes of gravity. Part I. Corner potentials and charges,” JHEP 11 (2020) 026, arXiv:2006.12527 [hep-th].
  41. L. Freidel, M. Geiller, and D. Pranzetti, “Edge modes of gravity. Part II. Corner metric and Lorentz charges,” JHEP 11 (2020) 027, arXiv:2007.03563 [hep-th].
  42. L. Freidel, M. Geiller, and D. Pranzetti, “Edge modes of gravity. Part III. Corner simplicity constraints,” JHEP 01 (2021) 100, arXiv:2007.12635 [hep-th].
  43. L. Freidel, R. Oliveri, D. Pranzetti, and S. Speziale, “Extended corner symmetry, charge bracket and Einstein’s equations,” JHEP 09 (2021) 083, arXiv:2104.12881 [hep-th].
  44. K. M. Zurek, “Snowmass 2021 White Paper: Observational Signatures of Quantum Gravity,” arXiv:2205.01799 [gr-qc].
  45. D. Amati, M. Ciafaloni, and G. Veneziano, “Planckian scattering beyond the semiclassical approximation,” Phys. Lett. B 289 (1992) 87–91.
  46. S. B. Giddings, D. J. Gross, and A. Maharana, “Gravitational effects in ultrahigh-energy string scattering,” Phys. Rev. D 77 (2008) 046001, arXiv:0705.1816 [hep-th].
  47. S. B. Giddings, “The gravitational S-matrix: Erice lectures,” Subnucl. Ser. 48 (2013) 93–147, arXiv:1105.2036 [hep-th].
  48. G. Compère, “Infinite towers of supertranslation and superrotation memories,” Phys. Rev. Lett. 123 no. 2, (2019) 021101, arXiv:1904.00280 [gr-qc].
  49. L. Freidel, D. Pranzetti, and A.-M. Raclariu, “A discrete basis for celestial holography,” arXiv:2212.12469 [hep-th].
  50. S. Choi, U. Kol, and R. Akhoury, “Asymptotic Dynamics in Perturbative Quantum Gravity and BMS Supertranslations,” JHEP 01 (2018) 142, arXiv:1708.05717 [hep-th].
  51. L. Donnay, A. Puhm, and A. Strominger, “Conformally Soft Photons and Gravitons,” JHEP 01 (2019) 184, arXiv:1810.05219 [hep-th].
  52. N. Arkani-Hamed, M. Pate, A.-M. Raclariu, and A. Strominger, “Celestial amplitudes from UV to IR,” JHEP 08 (2021) 062, arXiv:2012.04208 [hep-th].
  53. K. Nguyen and J. Salzer, “Celestial IR divergences and the effective action of supertranslation modes,” JHEP 09 (2021) 144, arXiv:2105.10526 [hep-th].
  54. D. Kapec and P. Mitra, “Shadows and soft exchange in celestial CFT,” Phys. Rev. D 105 no. 2, (2022) 026009, arXiv:2109.00073 [hep-th].
  55. D. Kapec, “Soft Particles and Infinite-Dimensional Geometry,” arXiv:2210.00606 [hep-th].
  56. H. Bondi, M. G. J. van der Burg, and A. W. K. Metzner, “Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems,” Proc. Roy. Soc. Lond. A 269 (1962) 21–52.
  57. R. Sachs, “Asymptotic symmetries in gravitational theory,” Phys. Rev. 128 (1962) 2851–2864.
  58. G. Barnich and C. Troessaert, “Aspects of the BMS/CFT correspondence,” JHEP 05 (2010) 062, arXiv:1001.1541 [hep-th].
  59. J. Winicour, “Logarithmic asymptotic flatness,” Foundations of Physics 15 no. 5, (1985) 605–616. https://doi.org/10.1007/BF01882485.
  60. P. T. Chrusciel, M. A. H. MacCallum, and D. B. Singleton, “Gravitational waves in general relativity: 14. Bondi expansions and the polyhomogeneity of Scri,” arXiv:gr-qc/9305021.
  61. M. Geiller and C. Zwikel, “The partial Bondi gauge: Further enlarging the asymptotic structure of gravity,” SciPost Phys. 13 (2022) 108, arXiv:2205.11401 [hep-th].
  62. G. Barnich and C. Troessaert, “BMS charge algebra,” JHEP 12 (2011) 105, arXiv:1106.0213 [hep-th].
  63. D. Kapec, M. Perry, A.-M. Raclariu, and A. Strominger, “Infrared Divergences in QED, Revisited,” Phys. Rev. D96 no. 8, (2017) 085002, arXiv:1705.04311 [hep-th].
  64. S. Pasterski, A. Puhm, and E. Trevisani, “Celestial diamonds: conformal multiplets in celestial CFT,” JHEP 11 (2021) 072, arXiv:2105.03516 [hep-th].
  65. S. Pasterski, A. Puhm, and E. Trevisani, “Revisiting the conformally soft sector with celestial diamonds,” JHEP 11 (2021) 143, arXiv:2105.09792 [hep-th].
  66. A. Ashtekar and R. O. Hansen, “A unified treatment of null and spatial infinity in general relativity. I - Universal structure, asymptotic symmetries, and conserved quantities at spatial infinity,” J. Math. Phys. 19 (1978) 1542–1566.
  67. A. Ashtekar, “Asymptotic Quantization of the Gravitational Field,” Phys. Rev. Lett. 46 (1981) 573–576.
  68. H. L. Verlinde and E. P. Verlinde, “QCD at high-energies and two-dimensional field theory,” arXiv:hep-th/9302104.
  69. 3, 2003. arXiv:hep-ph/0303204.
  70. M. Pate, A.-M. Raclariu, and A. Strominger, “Conformally Soft Theorem in Gauge Theory,” Phys. Rev. D 100 no. 8, (2019) 085017, arXiv:1904.10831 [hep-th].
  71. A. Ball, M. Pate, A.-M. Raclariu, A. Strominger, and R. Venugopalan, “Measuring color memory in a color glass condensate at electron–ion colliders,” Annals Phys. 407 (2019) 15–28, arXiv:1805.12224 [hep-ph].
  72. I. I. Shapiro, “Fourth Test of General Relativity,” Phys. Rev. Lett. 13 (1964) 789–791.
  73. X. O. Camanho, J. D. Edelstein, J. Maldacena, and A. Zhiboedov, “Causality Constraints on Corrections to the Graviton Three-Point Coupling,” JHEP 02 (2016) 020, arXiv:1407.5597 [hep-th].
  74. G. Compère, J. Long, and M. Riegler, “Invariance of Unruh and Hawking radiation under matter-induced supertranslations,” JHEP 05 (2019) 053, arXiv:1903.01812 [hep-th].
  75. L. Donnay, S. Pasterski, and A. Puhm, “Asymptotic Symmetries and Celestial CFT,” JHEP 09 (2020) 176, arXiv:2005.08990 [hep-th].
  76. J. Cotler, N. Miller, and A. Strominger, “An Integer Basis for Celestial Amplitudes,” arXiv:2302.04905 [hep-th].
  77. K. M. Zurek, “On vacuum fluctuations in quantum gravity and interferometer arm fluctuations,” Phys. Lett. B 826 (2022) 136910, arXiv:2012.05870 [hep-th].
  78. S. Gukov, V. S. H. Lee, and K. M. Zurek, “Near-horizon quantum dynamics of 4D Einstein gravity from 2D Jackiw-Teitelboim gravity,” Phys. Rev. D 107 no. 1, (2023) 016004, arXiv:2205.02233 [hep-th].
  79. G. Barnich and G. Compere, “Surface charge algebra in gauge theories and thermodynamic integrability,” J. Math. Phys. 49 (2008) 042901, arXiv:0708.2378 [gr-qc].
  80. G. Compère and J. Long, “Vacua of the gravitational field,” JHEP 07 (2016) 137, arXiv:1601.04958 [hep-th].
  81. G. Compère, A. Fiorucci, and R. Ruzziconi, “Superboost transitions, refraction memory and super-Lorentz charge algebra,” JHEP 11 (2018) 200, arXiv:1810.00377 [hep-th]. [Erratum: JHEP 04, 172 (2020)].
  82. F. Alessio and M. Arzano, “Note on the symplectic structure of asymptotically flat gravity and BMS symmetries,” Phys. Rev. D 100 no. 4, (2019) 044028, arXiv:1906.05036 [gr-qc].
Citations (10)

Summary

We haven't generated a summary for this paper yet.