Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Disentangled Variational Autoencoder for Emotion Recognition in Conversations (2305.14071v1)

Published 23 May 2023 in cs.CL, cs.SD, and eess.AS

Abstract: In Emotion Recognition in Conversations (ERC), the emotions of target utterances are closely dependent on their context. Therefore, existing works train the model to generate the response of the target utterance, which aims to recognise emotions leveraging contextual information. However, adjacent response generation ignores long-range dependencies and provides limited affective information in many cases. In addition, most ERC models learn a unified distributed representation for each utterance, which lacks interpretability and robustness. To address these issues, we propose a VAD-disentangled Variational AutoEncoder (VAD-VAE), which first introduces a target utterance reconstruction task based on Variational Autoencoder, then disentangles three affect representations Valence-Arousal-Dominance (VAD) from the latent space. We also enhance the disentangled representations by introducing VAD supervision signals from a sentiment lexicon and minimising the mutual information between VAD distributions. Experiments show that VAD-VAE outperforms the state-of-the-art model on two datasets. Further analysis proves the effectiveness of each proposed module and the quality of disentangled VAD representations. The code is available at https://github.com/SteveKGYang/VAD-VAE.

Citations (8)

Summary

We haven't generated a summary for this paper yet.