Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evaluating Factual Consistency of Summaries with Large Language Models (2305.14069v2)

Published 23 May 2023 in cs.CL

Abstract: Detecting factual errors in summaries has been an important and challenging subject in summarization research. Inspired by the emergent ability of LLMs, we explore evaluating factual consistency of summaries by directly prompting LLMs. We present a comprehensive empirical study to assess the ability of LLMs as factual consistency evaluators, which consists of (1) analyzing different LLMs such as the GPT model series and Flan-T5; (2) investigating a variety of prompting methods including vanilla prompting, chain-of-thought prompting, and a sentence-by-sentence prompting method to tackle long summaries; and (3) evaluating on diverse summaries generated by multiple summarization systems, ranging from pre-transformer methods to SOTA pretrained models. Our experiments demonstrate that prompting LLMs is able to outperform the previous best factuality systems in all settings, by up to 12.2 absolute points in terms of the binary classification accuracy on inconsistency detection.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Shiqi Chen (30 papers)
  2. Siyang Gao (15 papers)
  3. Junxian He (66 papers)
Citations (5)