Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tiling, spectrality and aperiodicity of connected sets (2305.14028v4)

Published 23 May 2023 in math.CA and math.CO

Abstract: Let $\Omega\subset \mathbb{R}d$ be a set of finite measure. The periodic tiling conjecture suggests that if $\Omega$ tiles $\mathbb{R}d$ by translations then it admits at least one periodic tiling. Fuglede's conjecture suggests that $\Omega$ admits an orthogonal basis of exponential functions if and only if it tiles $\mathbb{R}d$ by translations. Both conjectures are known to be false in sufficiently high dimensions, with all the so-far-known counterexamples being highly disconnected. On the other hand, both conjectures are known to be true for convex sets. In this work we study these conjectures for connected sets. We show that the periodic tiling conjecture, as well as both directions of Fuglede's conjecture are false for connected sets in sufficiently high dimensions.

Summary

We haven't generated a summary for this paper yet.