Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GATology for Linguistics: What Syntactic Dependencies It Knows (2305.13403v1)

Published 22 May 2023 in cs.CL

Abstract: Graph Attention Network (GAT) is a graph neural network which is one of the strategies for modeling and representing explicit syntactic knowledge and can work with pre-trained models, such as BERT, in downstream tasks. Currently, there is still a lack of investigation into how GAT learns syntactic knowledge from the perspective of model structure. As one of the strategies for modeling explicit syntactic knowledge, GAT and BERT have never been applied and discussed in Machine Translation (MT) scenarios. We design a dependency relation prediction task to study how GAT learns syntactic knowledge of three languages as a function of the number of attention heads and layers. We also use a paired t-test and F1-score to clarify the differences in syntactic dependency prediction between GAT and BERT fine-tuned by the MT task (MT-B). The experiments show that better performance can be achieved by appropriately increasing the number of attention heads with two GAT layers. With more than two layers, learning suffers. Moreover, GAT is more competitive in training speed and syntactic dependency prediction than MT-B, which may reveal a better incorporation of modeling explicit syntactic knowledge and the possibility of combining GAT and BERT in the MT tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yuqian Dai (2 papers)
  2. Serge Sharoff (13 papers)
  3. Marc de Kamps (9 papers)

Summary

We haven't generated a summary for this paper yet.