Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

High order asymptotic preserving scheme for linear kinetic equations with diffusive scaling (2305.13393v1)

Published 22 May 2023 in math.NA and cs.NA

Abstract: In this work, high order asymptotic preserving schemes are constructed and analysed for kinetic equations under a diffusive scaling. The framework enables to consider different cases: the diffusion equation, the advection-diffusion equation and the presence of inflow boundary conditions. Starting from the micro-macro reformulation of the original kinetic equation, high order time integrators are introduced. This class of numerical schemes enjoys the Asymptotic Preserving (AP) property for arbitrary initial data and degenerates when $\epsilon$ goes to zero into a high order scheme which is implicit for the diffusion term, which makes it free from the usual diffusion stability condition. The space discretization is also discussed and high order methods are also proposed based on classical finite differences schemes. The Asymptotic Preserving property is analysed and numerical results are presented to illustrate the properties of the proposed schemes in different regimes.

Citations (3)

Summary

We haven't generated a summary for this paper yet.