Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

EnSiam: Self-Supervised Learning With Ensemble Representations (2305.13391v1)

Published 22 May 2023 in cs.CV and cs.LG

Abstract: Recently, contrastive self-supervised learning, where the proximity of representations is determined based on the identities of samples, has made remarkable progress in unsupervised representation learning. SimSiam is a well-known example in this area, known for its simplicity yet powerful performance. However, it is known to be sensitive to changes in training configurations, such as hyperparameters and augmentation settings, due to its structural characteristics. To address this issue, we focus on the similarity between contrastive learning and the teacher-student framework in knowledge distillation. Inspired by the ensemble-based knowledge distillation approach, the proposed method, EnSiam, aims to improve the contrastive learning procedure using ensemble representations. This can provide stable pseudo labels, providing better performance. Experiments demonstrate that EnSiam outperforms previous state-of-the-art methods in most cases, including the experiments on ImageNet, which shows that EnSiam is capable of learning high-quality representations.

Summary

We haven't generated a summary for this paper yet.